Skip to main content

Real-Time ETL for Multimedia Sources: A Systematic Literature Review

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 1051))

  • 200 Accesses

Abstract

The proliferation of multimedia data sources including text, images, videos, etc., driven by the extensive usage of social media and smart devices, highlights a significant need for real-time processing. This crucial issue becomes particularly evident in decision support systems, which enable organizations to make timely, informed choices. In this paper, we present a comprehensive systematic literature review (SLR) aimed at identifying relevant studies that address the problem of real-time Extract, Transform, Load (ETL) processes with complex and heterogeneous data sources, specifically focusing on multimedia data known as Big Data Multimedia. We aim to extract various methods and technologies to adapt typical ETL processes to handle multimedia data sources. Initially, a set of 5,882 papers was selected. After applying the different steps of the SLR, this selection was filtered down to 11 papers using specific selection criteria and a thorough analysis of each paper. The selected studies were then utilized to address the defined research questions. Finally, this paper discusses synthesized data, current research gaps, and provides recommendations for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://spark.apache.org/.

  2. 2.

    https://www.ibm.com/topics/mapreduce.

  3. 3.

    https://kafka.apache.org/.

  4. 4.

    https://link.springer.com/.

  5. 5.

    https://dl.acm.org/.

  6. 6.

    https://scholar.google.com/.

  7. 7.

    https://www.sciencedirect.com/.

  8. 8.

    https://ieeexplore.ieee.org/Xplore/home.jsp.

  9. 9.

    https://www.scopus.com/search/form.uri?display=basic#basic.

References

  1. Pouyanfar, S., et al.: Multimedia big data analytics: a survey. ACM Comput. Surv. (CSUR) 51(1), 1–34 (2018)

    Article  Google Scholar 

  2. Mehmood, E., Anees, T.: Challenges and solutions for processing real-time big data stream: a systematic literature review. IEEE Access 8, 119123–119143 (2020)

    Article  Google Scholar 

  3. Rinaldi, A.M., Russo, C.: A semantic-based model to represent multimedia big data. In: Proceedings of the 10th International Conference on Management of Digital Ecosystems (2018)

    Google Scholar 

  4. Keele, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  5. Mehmood, E., Anees, T.: Performance analysis of not only SQL semi-stream join using MongoDB for real-time data warehousing. IEEE Access 7, 134215–134225 (2019)

    Article  Google Scholar 

  6. Mehmood, E., Anees, T.: Distributed real-time ETL architecture for unstructured big data. Knowl. Inf. Syst. 64(12), 3419–3445 (2022)

    Article  Google Scholar 

  7. Machado, G.V., et al.: DOD-ETL: distributed on-demand ETL for near real-time business intelligence. J. Internet Serv. Appl. 10, 1–15 (2019)

    Article  Google Scholar 

  8. Sharmila, et al.: Introduction to multimedia big data computing for IoT. In: Tanwar, S., Tyagi, S., Kumar, N. (eds.) Multimedia Big Data Computing for IoT Applications: Concepts, Paradigms and Solutions, pp. 3–36. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-8759-3_1

  9. Meehan, J., et al.: Integrating real-time and batch processing in a Polystore. In: 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE (2016)

    Google Scholar 

  10. Zhao, Z., et al.: PandaDB: an AI-native graph database for unified managing structured and unstructured data. In: Wang, X., et al. (eds.) DASFAA 2023. LNCS, vol. 13946, pp. 669–673. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30678-5_53

  11. Aved, A.J., Blasch, E.P.: Multi-int query language for DDDAS designs. Procedia Comput. Sci. 51, 2518–2532 (2015)

    Article  Google Scholar 

  12. Stumptner, R., Lettner, C., Freudenthaler, B.: Combining relational and NoSQL database systems for processing sensor data in disaster management. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2015. LNCS, vol. 9520, pp. 663–670. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27340-2_82

    Chapter  Google Scholar 

  13. Malik, K.R., et al.: Big-data: transformation from heterogeneous data to semantically-enriched simplified data. Multimedia Tools Appl. 75, 12727–12747 (2016)

    Article  Google Scholar 

  14. Sujatha, D., Subramaniam, M., Robin, C.R.R.: A new design of multimedia big data retrieval enabled by deep feature learning and Adaptive Semantic Similarity Function. Multimedia Syst. 28(3), 1039–1058 (2022)

    Article  Google Scholar 

  15. Guo, K., et al.: An effective and economical architecture for semantic-based heterogeneous multimedia big data retrieval. J. Syst. Software 102, 207–216 (2015)

    Article  Google Scholar 

  16. Kumar, D.: ETL based query processing architecture for sensornet. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 15(2), 247–254 (2017)

    Google Scholar 

  17. Kumari, A., et al.: Multimedia big data computing and Internet of Things applications: a taxonomy and process model. J. Network Comput. Appl. 124, 169–195 (2018)

    Article  Google Scholar 

  18. Marques, G.T., et al.: ETL framework for real-time business intelligence over medical imaging repositories. J. Digit. Imaging 32(5), 870–879 (2019)

    Article  Google Scholar 

  19. Balti, H., et al.: Multidimensional architecture using a massive and heterogeneous data: application to drought monitoring. Fut. Gener. Comput. Syst. 136, 1–14 (2022)

    Article  Google Scholar 

  20. Wang, K., et al.: Real-time load reduction in multimedia big data for mobile Internet. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 12(5s), 1–20 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Mallek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mallek, H., Ghozzi, F., Gargouri, F. (2024). Real-Time ETL for Multimedia Sources: A Systematic Literature Review. In: Abraham, A., Bajaj, A., Hanne, T., Siarry, P., Ma, K. (eds) Intelligent Systems Design and Applications. ISDA 2023. Lecture Notes in Networks and Systems, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-031-64850-2_6

Download citation

Publish with us

Policies and ethics