Skip to main content

The Role of Machine Learning in Big Data Analytics: Current Practices and Challenges

  • Chapter
  • First Online:
Development Methodologies for Big Data Analytics Systems

Abstract

A massive amount of data is generated at an ever-increasing rate. Social media, mobile phones, sensors, and medical imaging, among others, are examples of data sources. An important characteristic of the data generated by these sources is that the data is commonly either unstructured or semi-structured. Big data analytics comprises software systems that are able to analyze vast amounts of data to uncover information such as patterns and correlations that help decision-makers in making better decisions. Traditional approaches such as data warehousing and the use of a classic relational database management system (RDBMS) have become impractical to analyze such unstructured and semi-structured data. On the other hand, machine learning (ML) algorithms have proven to be successful in analyzing such vast amounts of data. In this chapter, we present some of the most widely used ML algorithms in big data analytics as well as the distributed platforms typically employed for processing the data. We also present a selection of three important application domains where ML algorithms have been applied to perform big data analytics. These application domains include healthcare, weather forecasting, and social networking. Finally, we review relevant approaches used in each domain area, the most commonly used ML algorithms per area, and specific domain area issues that need further research in big data analytics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reinsel, D., Gantz J., Rydning, J.: The Digitalization of The World: From Edge to Core (2018), https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

  2. Rahman, M.S., Reza, H.: A systematic review towards Big Data analytics in social media. Big Data Min. Anal. 5, 228–244 (2022). https://doi.org/10.26599/BDMA.2022.9020009

    Article  Google Scholar 

  3. Fisher, D., DeLine, R., Czerwinski, M., Drucker, S.: Interactions with Big Data analytics. Interactions. 19, 50–59 (2012). https://doi.org/10.1145/2168931.2168943

    Article  Google Scholar 

  4. Nti, I.K., Quarcoo, J.A., Aning, J., Fosu, G.K.: A mini-review of machine learning in big data analytics: applications, challenges, and prospects. Big Data Min. Anal. 5, 81–97 (2022). https://doi.org/10.26599/BDMA.2021.9020028

    Article  Google Scholar 

  5. Wixom, B., Ariyachandra, T., Douglas, D., Goul, K., Gupta, B., Iyer, L., Kulkarni, U., Mooney, B.J.G., Phillips-Wren, G., Turetken, O.: The current state of business intelligence in academia: the arrival of big data. Commun. Assoc. Inf. Syst. 34, 1–13 (2014). https://doi.org/10.17705/1cais.03401

    Article  Google Scholar 

  6. Laney, D.: 3D data management: Controlling data volume velocity and variety, https://studylib.net/doc/8647594/3d-data-management%2D%2Dcontrolling-data-volume%2D%2Dvelocity%2D%2Dan... (2001)

  7. Qiu, J., Wu, Q., Ding, G., Xu, Y., Feng, S.: A survey of machine learning for big data processing. EURASIP J. Adv. Signal Proc. 2016, 1–16 (2016)

    Google Scholar 

  8. EMC (ed.): Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data. Wiley Publishing (2015)

    Google Scholar 

  9. Grover, P., Kar, A.K.: Big Data analytics: a review on theoretical contributions and tools used in literature. Global J. Flex. Syst. Manag. 18, 203–229 (2017). https://doi.org/10.1007/s40171-017-0159-3

    Article  Google Scholar 

  10. Mikalef, P., Pappas, I.O., Krogstie, J., Giannakos, M.: Big data analytics capabilities: a systematic literature review and research agenda. Inf. Syst. E-Bus. Manag. 16, 547–578 (2018). https://doi.org/10.1007/s10257-017-0362-y

    Article  Google Scholar 

  11. Zhou, L., Pan, S., Wang, J., Vasilakos, A.V.: Machine learning on big data: opportunities and challenges. Neurocomputing. 237, 350–361 (2017). https://doi.org/10.1016/j.neucom.2017.01.026

    Article  Google Scholar 

  12. Russell, S., Norvig, P.: Artificial Intelligence: a Modern Approach. Prentice Hall (2010)

    MATH  Google Scholar 

  13. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)

    Book  MATH  Google Scholar 

  14. Sun, Z.Q., Fox, G.C.: Study on parallel SVM based on MapReduce. In: International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 495–561, Las Vegas, NV, USA (2012)

    Google Scholar 

  15. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis (1984)

    MATH  Google Scholar 

  16. Dai, W., Ji, W.-Z.: A MapReduce implementation of C4.5 Decision Tree algorithm. Int. J. Database Theory Appl. 7, 49–60 (2014)

    Article  Google Scholar 

  17. Purdilă, V., Pentiuc, Ş.-G.: MR-Tree-A scalable MapReduce algorithm for building decision trees. J. Appl. Comput. Sci. Math. 8, 16–19 (2014)

    Google Scholar 

  18. Mahdavinejad, M.S., Rezvan, M., Barekatain, M., Adibi, P., Barnaghi, P., Sheth, A.P.: Machine learning for internet of things data analysis: a survey. Digit. Commun. Netw. 4, 161–175 (2018). https://doi.org/10.1016/j.dcan.2017.10.002

    Article  Google Scholar 

  19. Kaur, N., Lal, N.: Clustering of social networking data using SparkR in Big Data. In: Mayank, S., Gupta, P.K., T.V, F.J, Ö.T (eds.) Advances in Computing and Data Sciences, pp. 217–226. Springer Singapore, Singapore (2018)

    Chapter  Google Scholar 

  20. Arora, P., Deepali, Varshney, S.: Analysis of K-means and K-Medoids algorithm for Big Data. In: International Conference on Information Security & Privacy (ICISP2015), pp. 507–512 (2016)

    Google Scholar 

  21. Prabhu, C.S.R., Chivukula, A.S., Mogadala, A., Ghosh, R., Livingston, L.M.J.: Big Data Analytics: Systems, Algorithms, Applications. Springer, Singapore (2019)

    Book  Google Scholar 

  22. Ray, S.: A quick review of Machine Learning algorithms. In: 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), pp. 35–39 (2019)

    Chapter  Google Scholar 

  23. Yuan, C., Yang, H.: Research on K-value selection method of K-means clustering algorithm. J (Basel). 2, 226–235 (2019). https://doi.org/10.3390/j2020016

    Article  Google Scholar 

  24. Narayanan, B.N., Djaneye-Boundjou, O., Kebede, T.M.: Performance analysis of machine learning and pattern recognition algorithms for Malware classification. In: 2016 IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Innovation Summit (OIS), pp. 338–342 (2016)

    Chapter  Google Scholar 

  25. Narayanan, B.N., Hardie, R.C., Kebede, T.M.: Performance analysis of a computer-aided detection system for lung nodules in CT at different slice thicknesses. J. Med. Imag. 5, 14504 (2018). https://doi.org/10.1117/1.JMI.5.1.014504

    Article  Google Scholar 

  26. Narayanan, B.N., Hardie, R.C., Kebede, T.M., Sprague, M.J.: Optimized feature selection-based clustering approach for computer-aided detection of lung nodules in different modalities. Pattern Anal. Appl. 22, 559–571 (2019). https://doi.org/10.1007/s10044-017-0653-4

    Article  MathSciNet  Google Scholar 

  27. Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A.: Multi-level hybrid support vector machine and extreme learning machine based on modified K-means for intrusion detection system. Expert Syst. Appl. 67, 296–303 (2017). https://doi.org/10.1016/j.eswa.2016.09.041

    Article  Google Scholar 

  28. Ge, Y., Tang, K.: Distributed dynamic cluster algorithm for wireless sensor networks. In: 6th International Conference on Wireless, Mobile and Multi-Media (ICWMMN 2015), pp. 23–27 (2015)

    Google Scholar 

  29. Ran, X., Zhou, X., Lei, M., Tepsan, W., Deng, W.: A novel K-means clustering algorithm with a noise algorithm for capturing urban hotspots. Appl. Sci. (Switzerland). 11 (2021). https://doi.org/10.3390/app112311202

  30. Bendechache, M., Kechadi, M.-T.: Distributed clustering algorithm for spatial data mining. In: 2015 2nd IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services (ICSDM), pp. 60–65 (2015)

    Chapter  Google Scholar 

  31. Chiroma, H., Abdullahi, U.A., Abdulhamid, S.M., Abdulsalam Alarood, A., Gabralla, L.A., Rana, N., Shuib, L., Targio Hashem, I.A., Gbenga, D.E., Abubakar, A.I., Zeki, A.M., Herawan, T.: Progress on artificial neural networks for Big Data analytics: a survey. IEEE Access. 7, 70535–70551 (2019). https://doi.org/10.1109/ACCESS.2018.2880694

    Article  Google Scholar 

  32. Shen, D., Wu, G., Suk, H.-I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017). https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  Google Scholar 

  33. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM. 51, 107–113 (2008). https://doi.org/10.1145/1327452.1327492

    Article  Google Scholar 

  34. Harerimana, G., Jang, B., Kim, J.W., Park, H.K.: Health Big Data analytics: a technology survey. IEEE Access. 6, 65661–65678 (2018). https://doi.org/10.1109/ACCESS.2018.2878254

    Article  Google Scholar 

  35. Apache Software Foundation: Apache Hadoop, https://hadoop.apache.org/

  36. Ketu, S., Mishra, P.K., Agarwal, S.: Performance analysis of distributed computing frameworks for Big Data analytics: Hadoop vs Spark. Computación y Sistemas. 24, 669–686 (2020). https://doi.org/10.13053/CyS-24-2-3401

    Article  Google Scholar 

  37. Mohd, A.B., Banu, A., Yakub, M.: Evolution of big data and tools for big data analytics. J. Interdiscipl. Cycle Res. 12, 309–316 (2020)

    Google Scholar 

  38. Gupta, P., Sharma, A., Jindal, R.: Scalable machine-learning algorithms for big data analytics: a comprehensive review. WIREs Data Min. Knowl. Discov. 6, 194–214 (2016). https://doi.org/10.1002/widm.1194

    Article  Google Scholar 

  39. Raza, M.U., XuJian, Z.: A comprehensive overview of BIG DATA technologies: a survey. In: Proceedings of the 5th International Conference on Big Data and Computing, pp. 23–31. Association for Computing Machinery, New York, NY, USA (2020)

    Chapter  Google Scholar 

  40. Venkatram, K., Geetha, M.A.: Review on Big Data & analytics – concepts, philosophy, process and applications. Cybern. Inf. Technol. 17, 3–27 (2017). https://doi.org/10.1515/cait-2017-0013

    Article  MathSciNet  Google Scholar 

  41. Ikegwu, A.C., Nweke, H.F., Anikwe, C.V., Alo, U.R., Okonkwo, O.R.: Big data analytics for data-driven industry: a review of data sources, tools, challenges, solutions, and research directions. Cluster Comput. (2022). https://doi.org/10.1007/s10586-022-03568-5

  42. Faridoon, A., Imran, M.: Big data storage tools using NoSQL databases and their applications in various domains: a systematic review. Comput. Inf. 40, 489–521 (2021). https://doi.org/10.31577/cai_2021_3_489

    Article  Google Scholar 

  43. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., DATA, M.: Practical machine learning tools and techniques. In: Data Mining (2005)

    Google Scholar 

  44. R Core Team: R.: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2022)

  45. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel Distrib. Comput. 74, 2561–2573 (2014). https://doi.org/10.1016/j.jpdc.2014.01.003

    Article  Google Scholar 

  46. Galetsi, P., Katsaliaki, K.: A review of the literature on big data analytics in healthcare. J. Oper. Res. Soc. 71, 1511–1529 (2020). https://doi.org/10.1080/01605682.2019.1630328

    Article  Google Scholar 

  47. Cirillo, D., Valencia, A.: Big data analytics for personalized medicine. Curr. Opin. Biotechnol. 58, 161–167 (2019). https://doi.org/10.1016/j.copbio.2019.03.004

    Article  Google Scholar 

  48. Akundi, S.H., Soujanya, R., Madhuri, P.M.: Big Data analytics in healthcare using Machine Learning algorithms: a comparative study. Int. J. Online Biomed. Eng. (iJOE). 16, 19–32 (2020). https://doi.org/10.3991/ijoe.v16i13.18609

    Article  Google Scholar 

  49. Agarwal, R., Dhar, V.: Editorial—Big Data, data science, and analytics: the opportunity and challenge for IS research. Inf. Syst. Res. 25, 443–448 (2014). https://doi.org/10.1287/isre.2014.0546

    Article  Google Scholar 

  50. Sunil Kumar, M.S.: Big Data analytics for healthcare industry: impact, applications, and tools. Big Data Min. Anal. 2, 48 (2019). https://doi.org/10.26599/BDMA.2018.9020031

    Article  Google Scholar 

  51. Ristevski, B., Chen, M.: Big Data analytics in medicine and healthcare. J. Integr. Bioinform. 15 (2018). https://doi.org/10.1515/jib-2017-0030

  52. Gostin, L.O., Halabi, S.F., Wilson, K.: Health data and privacy in the digital era. JAMA. 320, 233–234 (2018). https://doi.org/10.1001/jama.2018.8374

    Article  Google Scholar 

  53. Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., Venugopalan, S., Widner, K., Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson, P.C., Mega, J.L., Webster, D.R.: Development and validation of a Deep Learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 316, 2402–2410 (2016). https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  54. Yuvaraj, N., SriPreethaa, K.R.: Diabetes prediction in healthcare systems using machine learning algorithms on Hadoop cluster. Cluster Comput. 22, 1–9 (2019). https://doi.org/10.1007/s10586-017-1532-x

    Article  Google Scholar 

  55. Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access. 5, 8869–8879 (2017). https://doi.org/10.1109/ACCESS.2017.2694446

    Article  Google Scholar 

  56. Dugan, T.M., Mukhopadhyay, S., Carroll, A., Downs, S.: Machine learning techniques for prediction of early childhood obesity. Appl. Clin. Inform. 06, 506–520 (2015)

    Article  Google Scholar 

  57. Alotaibi, S., Mehmood, R., Katib, I., Rana, O., Albeshri, A.: Sehaa: a Big Data analytics tool for healthcare symptoms and diseases detection using Twitter, Apache Spark, and machine learning. Appl. Sci. 10 (2020). https://doi.org/10.3390/app10041398

  58. Richardson, L.F., Lynch, P.: Weather Prediction by Numerical Process. Cambridge University Press (2007)

    Book  Google Scholar 

  59. NCAR/UCAR.: WRF model users site, http://www2.mmm.ucar.edu/wrf/users/

  60. Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gill, D.O., Coen, J.L., Gochis, D.J., Ahmadov, R., Peckham, S.E., Grell, G.A., Michalakes, J., Trahan, S., Benjamin, S.G., Alexander, C.R., Dimego, G.J., Wang, W., Schwartz, C.S., Romine, G.S., Liu, Z., Snyder, C., Chen, F., Barlage, M.J., Yu, W., Duda, M.G.: The weather research and forecasting model: overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 98, 1717–1737 (2017). https://doi.org/10.1175/BAMS-D-15-00308.1

    Article  Google Scholar 

  61. Hewage, P., Trovati, M., Pereira, E., Behera, A.: Deep learning-based effective fine-grained weather forecasting model. Pattern Anal. Appl. 24, 343–366 (2021). https://doi.org/10.1007/s10044-020-00898-1

    Article  Google Scholar 

  62. Ahmadi, A., Zargaran, Z., Mohebi, A., Taghavi, F.: Hybrid model for weather forecasting using ensemble of neural networks and mutual information. In: 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 3774–3777 (2014)

    Chapter  Google Scholar 

  63. Patil, K., Deo, M.C.: Basin-scale prediction of sea surface temperature with artificial neural networks. In: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), p. 1–5 (2018)

    Google Scholar 

  64. Rodriguez-Fernandez, N.-J., de Rosnay, P., Albergel, C., Aires, F.: SMOS Neural Network Soil Moisture Data Assimilation. (2017)

    Google Scholar 

  65. Sharaff, A., Roy, S.R.: Comparative analysis of temperature prediction using regression methods and back propagation neural network. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 739–742 (2018)

    Chapter  Google Scholar 

  66. Liu, J.N.K., Hu, Y.-X., You, J.J., Chan, P.W.: Deep neural network based feature representation for weather forecasting. In: The 2014 World Congress in Computer Science, Computer Engineering, and Applied Computing (2014)

    Google Scholar 

  67. Dalto, M., Matuško, J., Vašak, M.: Deep neural networks for ultra-short-term wind forecasting. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 1657–1663 (2015)

    Chapter  Google Scholar 

  68. Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W., Woo, W.: Convolutional LSTM network: a machine learning approach for precipitation Nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, pp. 802–810. MIT Press, Cambridge, MA (2015)

    Google Scholar 

  69. Hossain, M., Rekabdar, B., Louis, S.J., Dascalu, S.: Forecasting the weather of Nevada: a deep learning approach. In: 2015 International Joint Conference on Neural Networks (IJCNN), p. 1–6 (2015)

    Google Scholar 

  70. Yonekura, K., Hattori, H., Suzuki, T.: Short-term local weather forecast using dense weather station by deep neural network. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 1683–1690 (2018)

    Chapter  Google Scholar 

  71. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy. 105, 569–582 (2017). https://doi.org/10.1016/j.renene.2016.12

    Article  Google Scholar 

  72. Rasel, R.I., Sultana, N., Meesad, P.: An application of data mining and machine learning for weather forecasting. In: Meesad, P., Sodsee, S., Unger, H. (eds.) Recent Advances in Information and Communication Technology 2017, pp. 169–178. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  73. Mahmood, M.R., Patra, R.K., Raja, R., Sinha, G.R.: A novel approach for weather prediction using forecasting analysis and data mining techniques. In: Saini, H.S., Singh, R.K., Kumar, G., Rather, G.M., Santhi, K. (eds.) Innovations in Electronics and Communication Engineering, pp. 479–489. Springer Singapore, Singapore (2019)

    Chapter  Google Scholar 

  74. Zhan, Y., Zhang, H., Liu, Y.: Forecast of meteorological and hydrological features based on SVR model. In: 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), pp. 579–583 (2021)

    Chapter  Google Scholar 

  75. Maliyeckel, M.B., Sai, B.C., Naveen, J.: A comparative study of LGBM-SVR hybrid machine learning model for rainfall prediction. In: 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), p. 1–7 (2021)

    Google Scholar 

  76. Fathi, M., Haghi Kashani, M., Jameii, S.M., Mahdipour, E.: Big Data analytics in weather forecasting: a systematic review. Arch. Comput. Methods Eng. 29, 1247–1275 (2022). https://doi.org/10.1007/s11831-021-09616-4

    Article  Google Scholar 

  77. Zhou, K., Zheng, Y., Li, B., Dong, W., Zhang, X.: Forecasting different types of convective weather: a deep learning approach. J. Meteorolog. Res. 33, 797–809 (2019). https://doi.org/10.1007/s13351-019-8162-6

    Article  Google Scholar 

  78. Mehrkanoon, S.: Deep shared representation learning for weather elements forecasting. Knowledge-Based Syst. 179, 120–128 (2019). https://doi.org/10.1016/j.knosys.2019.05.009

    Article  Google Scholar 

  79. Troncoso, A., Salcedo-Sanz, S., Casanova-Mateo, C., Riquelme, J.C., Prieto, L.: Local models-based regression trees for very short-term wind speed prediction. Renew. Energy. 81, 589–598 (2015). https://doi.org/10.1016/j.renene.2015.03.071

    Article  Google Scholar 

  80. Lee, Z.-J., Lee, C.-Y., Yuan, X.-J., Chu, K.-C.: Rainfall forecasting of landslides using support vector regression. In: 2020 3rd IEEE International Conference on Knowledge Innovation and Invention (ICKII), pp. 1–3 (2020)

    Google Scholar 

  81. Faroukhi, A.Z., Alaoui, I., Gahi, Y., Amine, A.: An adaptable big data value chain framework for end-to-end big data monetization. Big Data Cogn. Comput. 4, 1–27 (2020). https://doi.org/10.3390/bdcc4040034

    Article  Google Scholar 

  82. Latif, M.H., Afzal, H.: Prediction of movies popularity using machine learning techniques. Int. J. Comput. Sci. Netw Secur. 16, 127–131 (2016)

    Google Scholar 

  83. Lakshmanaprabu, S.K., Shankar, K., Khanna, A., Gupta, D., Rodrigues, J.J.P.C., Pinheiro, P.R., de Albuquerque, V.H.C.: Effective features to classify big data using social internet of things. IEEE Access. 6, 24196–24204 (2018)

    Article  Google Scholar 

  84. Patgiri, R., Varshney, U., Akutota, T., Kunde, R.: An investigation on intrusion detection system using machine learning. In: Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, p. 1684–1691. Institute of Electrical and Electronics Engineers Inc. (2019)

    Google Scholar 

  85. Liang, F., Hatcher, W.G., Liao, W., Gao, W., Yu, W.: Machine learning for security and the Internet of Things: the good, the bad, and the ugly. IEEE Access. 7, 158126–158147 (2019). https://doi.org/10.1109/ACCESS.2019.2948912

    Article  Google Scholar 

  86. Zheng, X., Chen, W., Wang, P., Shen, D., Chen, S., Wang, X., Zhang, Q., Yang, L.: Big Data for social transportation. IEEE Trans. Intell. Transp. Syst. 17, 620–630 (2016). https://doi.org/10.1109/TITS.2015.2480157

    Article  Google Scholar 

  87. Jain, A., Shakya, A., Khatter, H., Gupta, A.K.: A smart system for fake news detection using machine learning. In: 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), p. 1–4 (2019)

    Google Scholar 

  88. Nallaperuma, D., Nawaratne, R., Bandaragoda, T., Adikari, A., Nguyen, S., Kempitiya, T., de Silva, D., Alahakoon, D., Pothuhera, D.: Online incremental machine learning platform for Big Data-driven smart traffic management. IEEE Trans. Intell. Transp. Syst. 20, 4679–4690 (2019). https://doi.org/10.1109/TITS.2019.2924883

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector A. Duran-Limon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duran-Limon, H.A., Chavoya, A., Hernández-Ochoa, M. (2024). The Role of Machine Learning in Big Data Analytics: Current Practices and Challenges. In: Mora, M., Wang, F., Marx Gomez, J., Duran-Limon, H. (eds) Development Methodologies for Big Data Analytics Systems. Transactions on Computational Science and Computational Intelligence. Springer, Cham. https://doi.org/10.1007/978-3-031-40956-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40956-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40955-4

  • Online ISBN: 978-3-031-40956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics