Abstract
Message recovery attacks against the Classic McEliece proposal to the NIST standardization process, have recently made use of the Integer syndrome decoding problem. It was demonstrated the one can modify or find extra information about the encrypted data, by means of physical attacks. The question raised by these modifications gave birth to the integer syndrome decoding problem. Here, we propose an algorithm that works as an optimized exhaustive-search, and thus finds all the solutions to the aforementioned problem. The key idea in the complexity gain is to split the binomial coefficient into product of smaller binomial coefficients. We show that this can be achieved using a permutation decomposition of the input matrix. Simulations are provided for small length and dimension matrices.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how 1+1=0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)
Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_42
Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2
Bucerzan, D., Dragoi, V., Kalachi, H.T.: Evolution of the McEliece public key encryption scheme. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 129–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5_10
Buchmann, J.A., Lauter, K.E., Mosca, M.: Postquantum cryptography - state of the art. IEEE Secur. Priv. 15, 12–13 (2017)
Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to Mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inform. Theory 44(1), 367–378 (1998)
Cayrel, P.-L., Colombier, B., Drăgoi, V.-F., Menu, A., Bossuet, L.: Message-recovery laser fault injection attack on the Classic McEliece cryptosystem. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 438–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_15
Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2
Debris-Alazard, T., Tillich, J.-P.: Statistical decoding. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1798–1802 (2017)
Dragoi, V.-F., Tiplea, F.L.: Generalized-inverse based decoding. Technical report (2022)
Drăgoi, V., Richmond, T., Bucerzan, D., Legay, A.: Survey on cryptanalysis of code-based cryptography: from theoretical to physical attacks. In: 2018 7th International Conference on Computers Communications and Control (ICCCC), pp. 215–223 (2018)
Dumer, I.: Two decoding algorithms for linear codes. Probl. Inf. Transm. 25(1), 17–23 (1989)
Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of 5th Joint Soviet-Swedish International Workshop on Information Theory, Moscow, pp. 50–52 (1991)
Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_6
Fossorier, M.P.C., Kobara, K., Imai, H.: Modeling bit flipping decoding based on nonorthogonal check sums with application to iterative decoding attack of mceliece cryptosystem. IEEE Trans. Inf. Theor. 53(1), 402–411 (2007)
Huffman, W.C., Kim, J.-L., Solé, P.: Concise Encyclopedia of Coding Theory, 1st edn. Chapman and Hall/CRC (2021)
Jabri, A.A.: A statistical decoding algorithm for general linear block codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_1
Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_25
Leon, J.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inform. Theory 34(5), 1354–1359 (1988)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 5th edn. North-Holland, Amsterdam (1986)
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6
May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9
McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978). DSN Progress Report 44
Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780656_24
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, New York (2006)
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) FOCS, pp. 124–134 (1994)
Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850
Acknowledgment
V-F. Drăgoi was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number PN-III-P1-1.1-PD-2019-0285, within PNCDI III.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dragoi, VF., Lacatus, A.T., Popoviciu, A. (2023). Combinatorial Algorithms for Integer Syndrome Decoding Problem. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-031-23636-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23635-8
Online ISBN: 978-3-031-23636-5
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)