Skip to main content

Combinatorial Algorithms for Integer Syndrome Decoding Problem

  • Conference paper
  • First Online:
Soft Computing Applications (SOFA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1438))

Included in the following conference series:

  • 176 Accesses

Abstract

Message recovery attacks against the Classic McEliece proposal to the NIST standardization process, have recently made use of the Integer syndrome decoding problem. It was demonstrated the one can modify or find extra information about the encrypted data, by means of physical attacks. The question raised by these modifications gave birth to the integer syndrome decoding problem. Here, we propose an algorithm that works as an optimized exhaustive-search, and thus finds all the solutions to the aforementioned problem. The key idea in the complexity gain is to split the binomial coefficient into product of smaller binomial coefficients. We show that this can be achieved using a permutation decomposition of the input matrix. Simulations are provided for small length and dimension matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how 1+1=0 improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  2. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, D.J., Lange, T., Peters, C.: Smaller decoding exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_42

    Chapter  Google Scholar 

  4. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  5. Bucerzan, D., Dragoi, V., Kalachi, H.T.: Evolution of the McEliece public key encryption scheme. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 129–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5_10

    Chapter  Google Scholar 

  6. Buchmann, J.A., Lauter, K.E., Mosca, M.: Postquantum cryptography - state of the art. IEEE Secur. Priv. 15, 12–13 (2017)

    Article  Google Scholar 

  7. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to Mceliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inform. Theory 44(1), 367–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cayrel, P.-L., Colombier, B., Drăgoi, V.-F., Menu, A., Bossuet, L.: Message-recovery laser fault injection attack on the Classic McEliece cryptosystem. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 438–467. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_15

    Chapter  Google Scholar 

  9. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2

    Chapter  Google Scholar 

  10. Debris-Alazard, T., Tillich, J.-P.: Statistical decoding. In: 2017 IEEE International Symposium on Information Theory (ISIT), pp. 1798–1802 (2017)

    Google Scholar 

  11. Dragoi, V.-F., Tiplea, F.L.: Generalized-inverse based decoding. Technical report (2022)

    Google Scholar 

  12. Drăgoi, V., Richmond, T., Bucerzan, D., Legay, A.: Survey on cryptanalysis of code-based cryptography: from theoretical to physical attacks. In: 2018 7th International Conference on Computers Communications and Control (ICCCC), pp. 215–223 (2018)

    Google Scholar 

  13. Dumer, I.: Two decoding algorithms for linear codes. Probl. Inf. Transm. 25(1), 17–23 (1989)

    MATH  Google Scholar 

  14. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of 5th Joint Soviet-Swedish International Workshop on Information Theory, Moscow, pp. 50–52 (1991)

    Google Scholar 

  15. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_6

    Chapter  Google Scholar 

  16. Fossorier, M.P.C., Kobara, K., Imai, H.: Modeling bit flipping decoding based on nonorthogonal check sums with application to iterative decoding attack of mceliece cryptosystem. IEEE Trans. Inf. Theor. 53(1), 402–411 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huffman, W.C., Kim, J.-L., Solé, P.: Concise Encyclopedia of Coding Theory, 1st edn. Chapman and Hall/CRC (2021)

    Google Scholar 

  18. Jabri, A.A.: A statistical decoding algorithm for general linear block codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3_1

    Chapter  Google Scholar 

  19. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_25

    Chapter  Google Scholar 

  20. Leon, J.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Inform. Theory 34(5), 1354–1359 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 5th edn. North-Holland, Amsterdam (1986)

    MATH  Google Scholar 

  22. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  23. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  24. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab (1978). DSN Progress Report 44

    Google Scholar 

  25. Overbeck, R.: Statistical decoding revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006). https://doi.org/10.1007/11780656_24

    Chapter  Google Scholar 

  26. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  27. Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  28. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) FOCS, pp. 124–134 (1994)

    Google Scholar 

  29. Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850

    Chapter  Google Scholar 

Download references

Acknowledgment

V-F. Drăgoi was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI - UEFISCDI, project number PN-III-P1-1.1-PD-2019-0285, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlad-Florin Dragoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dragoi, VF., Lacatus, A.T., Popoviciu, A. (2023). Combinatorial Algorithms for Integer Syndrome Decoding Problem. In: Balas, V.E., Jain, L.C., Balas, M.M., Baleanu, D. (eds) Soft Computing Applications. SOFA 2020. Advances in Intelligent Systems and Computing, vol 1438. Springer, Cham. https://doi.org/10.1007/978-3-031-23636-5_50

Download citation

Publish with us

Policies and ethics