Abstract
Distributed oblivious polynomial evaluation (DOPE) is a special case of two-party computation where a sender party holds a polynomial f(x) of degree t and a receiver party has an input \(x_2\). They communicate with a set of distributed cloud servers to implement a secure computation such that the receiver party obtains \(f(x_2)\), while the privacy of their inputs is preserved.
We present a verifiable and private DOPE protocol using additive homomorphic encryption in the presence of k distributed servers where k does not depend on the degree t. The sender is involved in the offline phase which can be implemented at any time well in advance of the actual online computation phase. Our protocol holds the unconditional security against a malicious sender in the offline phase and a static active adversary corrupting a coalition of at most \(k-1\) dishonest servers in the online computation phase with negligible probability of error. In addition, it preserves strong privacy conditions for a DOPE system. The communication complexity is determined by the term kt which improves the DOPE approaches of [18] and [5]. Also, the proposed protocol can be extended to a protocol of secure \(\left( {\begin{array}{c}1\\ 2\end{array}}\right) \) distributed oblivious transfer with the linear communication complexity O(k) where the same setting of security is achieved.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11
Blundo, C., D’Arco, P., De Santis, A., Stinson, D.: On unconditionally secure distributed oblivious transfer. J. Cryptol. 20(3), 323–373 (2007)
Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on unconditionally secure distributed oblivious transfer. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36492-7_19
Chang, Y.-C., Lu, C.-J.: Oblivious polynomial evaluation and oblivious neural learning. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 369–384. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_22
Cianciullo, L., Ghodosi, H.: Unconditionally secure distributed oblivious polynomial evaluation. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 132–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4_9
Corniaux, C.L., Ghodosi, H.: A verifiable 1-out-of-n distributed oblivious transfer protocol. IACR Cryptol. ePrint Arch. 2013, 63 (2013)
Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2_9
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Gajera, H., Giraud, M., Gérault, D., Das, M.L., Lafourcade, P.: Verifiable and private oblivious polynomial evaluation. In: Laurent, M., Giannetsos, T. (eds.) WISTP 2019. LNCS, vol. 12024, pp. 49–65. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41702-4_4
Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_8
Hanaoka, G., Imai, H., Mueller-Quade, J., Nascimento, A.C.A., Otsuka, A., Winter, A.: Information theoretically secure oblivious polynomial evaluation: model, bounds, and constructions. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 62–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_6
Hazay, C., Lindell, Y.: Efficient oblivious polynomial evaluation with simulation-based security. IACR Cryptol. ePrint Arch. 2009, 459 (2009)
Kamara, S., Raykova, M.: Parallel homomorphic encryption. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 213–225. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41320-9_15
Kiayias, A., Leonardos, N., Lipmaa, H., Pavlyk, K., Tang, Q.: Optimal rate private information retrieval from homomorphic encryption. Proc. Priv. Enhancing Technol. 2015(2), 222–243 (2015)
Li, H.-D., Yang, X., Feng, D.-G., Li, B.: Distributed oblivious function evaluation and its applications. J. Comput. Sci. Technol. 19(6), 942–947 (2004). https://doi.org/10.1007/BF02973458
Lindell, Y.: How to simulate it-a tutorial on the simulation proof technique. Tutorials on the Foundations of Cryptography pp. 277–346 (2017)
Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of cryptology 15(3) (2002)
Naor, M., Pinkas, B.: Oblivious transfer and polynomial evaluation. In: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pp. 245–254 (1999)
Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_16
Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA. 1, 448–457 (2001)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Tassa, T., Jarrous, A., Ben-Ya’akov, Y.: Oblivious evaluation of multivariate polynomials. J. Math. Cryptology 7(1), 1–29 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hamidi, A., Ghodosi, H. (2022). Verifiable DOPE from Somewhat Homomorphic Encryption, and the Extension to DOT. In: Su, C., Sakurai, K., Liu, F. (eds) Science of Cyber Security. SciSec 2022. Lecture Notes in Computer Science, vol 13580. Springer, Cham. https://doi.org/10.1007/978-3-031-17551-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-17551-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17550-3
Online ISBN: 978-3-031-17551-0
eBook Packages: Computer ScienceComputer Science (R0)