Skip to main content

Image-Binary Automata

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 13037))

Included in the following conference series:

  • 160 Accesses

Abstract

We introduce a certain restriction of weighted automata over the rationals, called image-binary automata. We show that such automata accept the regular languages, can be exponentially more succinct than corresponding NFAs, and allow for polynomial complementation, union, and intersection. This compares favourably with unambiguous automata whose complementation requires a superpolynomial state blowup. We also study an infinite-word version, image-binary Büchi automata. We show that such automata are amenable to probabilistic model checking, similarly to unambiguous Büchi automata. We provide algorithms to translate k-ambiguous Büchi automata to image-binary Büchi automata, leading to model-checking algorithms with optimal computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_37

    Chapter  MATH  Google Scholar 

  2. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata are polynomially predictable with membership queries. In: 28th EACSL Annual Conference on Computer Science Logic (CSL 2020) (2020)

    Google Scholar 

  3. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata (extended version of a CAV’16 paper). arXiv:1605.00950 (2016), http://arxiv.org/abs/1605.00950

  4. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Heidelberg (1988)

    Google Scholar 

  5. Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5(1), 26–40 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colcombet, T.: Unambiguity in automata theory. In: 17th International Workshop on Descriptional Complexity of Formal Systems (DCFS) (2015)

    Google Scholar 

  7. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01492-5

    Book  MATH  Google Scholar 

  8. Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Int. J. Found. Comput. Sci. 22(08), 1829–1844 (2011)

    Google Scholar 

  9. Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG News 4(4), 10–17 (2017)

    Article  MATH  Google Scholar 

  10. Filiot, E., Gentilini, R., Raskin, J.F.: Finite-valued weighted automata. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014) (2014)

    Google Scholar 

  11. Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. 53, 197–222 (1974)

    MathSciNet  MATH  Google Scholar 

  12. Golomb, S.W., Goldstein, R.M., Hales, A.W., Welch, L.R.: Shift Register Sequences. Holden-Day Series in Information Systems, Holden-Day, San Francisco (1967)

    Google Scholar 

  13. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

    Google Scholar 

  14. Indzhev, E., Kiefer, S.: On complementing unambiguous automata and graphs with many cliques and cocliques. arXiv preprint arXiv:2105.07470 (2021)

  15. Jirásek, J., Jirásková, G., Sebej, J.: Operations on unambiguous finite automata. Int. J. Found. Comput. Sci. 29(5), 861–876 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds for Büchi disambiguation. In: Proceedings of the Automated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013 (2013)

    Google Scholar 

  17. Kiefer, S., Widdershoven, C.: Image-binary automata (extended version of a DCFS’21 paper). arXiv:2109.01049 (2021), http://arxiv.org/abs/2109.01049

  18. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Löding, C., Pirogov, A.: On finitely ambiguous Büchi automata. In: International Conference on Developments in Language Theory, LNCS, pp. 503–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-09698-8

  20. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  21. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (2014)

    Google Scholar 

  22. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raskin, M.: A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018) (2018)

    Google Scholar 

  24. Safra, S.: On the complexity of omega-automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, pp. 319–327 (1988)

    Google Scholar 

  25. Schützenberger, M.: On the definition of a family of automata. Inf. Control 4(2), 245–270 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tzeng, W.G.: On path equivalence of nondeterministic finite automata. Inf. Process. Lett. 58(1), 43–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret. Comput. Sci. 88(2), 325–349 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Mathieu Kubik, Tomasz Ponitka, and Joao Paulo Costalonga contributed ideas to the proofs of Lemmas 8, 7, and [17, Lemma 25], respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cas Widdershoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kiefer, S., Widdershoven, C. (2021). Image-Binary Automata. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93489-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93488-0

  • Online ISBN: 978-3-030-93489-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics