Abstract
We introduce a certain restriction of weighted automata over the rationals, called image-binary automata. We show that such automata accept the regular languages, can be exponentially more succinct than corresponding NFAs, and allow for polynomial complementation, union, and intersection. This compares favourably with unambiguous automata whose complementation requires a superpolynomial state blowup. We also study an infinite-word version, image-binary Büchi automata. We show that such automata are amenable to probabilistic model checking, similarly to unambiguous Büchi automata. We provide algorithms to translate k-ambiguous Büchi automata to image-binary Büchi automata, leading to model-checking algorithms with optimal computational complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 482–491. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24372-1_37
Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous Büchi automata are polynomially predictable with membership queries. In: 28th EACSL Annual Conference on Computer Science Logic (CSL 2020) (2020)
Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata (extended version of a CAV’16 paper). arXiv:1605.00950 (2016), http://arxiv.org/abs/1605.00950
Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Heidelberg (1988)
Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. Syst. Sci. 5(1), 26–40 (1971)
Colcombet, T.: Unambiguity in automata theory. In: 17th International Workshop on Descriptional Complexity of Formal Systems (DCFS) (2015)
Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01492-5
Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Int. J. Found. Comput. Sci. 22(08), 1829–1844 (2011)
Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG News 4(4), 10–17 (2017)
Filiot, E., Gentilini, R., Raskin, J.F.: Finite-valued weighted automata. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014) (2014)
Fliess, M.: Matrices de Hankel. J. Math. Pures Appl. 53, 197–222 (1974)
Golomb, S.W., Goldstein, R.M., Hales, A.W., Welch, L.R.: Shift Register Sequences. Holden-Day Series in Information Systems, Holden-Day, San Francisco (1967)
Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)
Indzhev, E., Kiefer, S.: On complementing unambiguous automata and graphs with many cliques and cocliques. arXiv preprint arXiv:2105.07470 (2021)
Jirásek, J., Jirásková, G., Sebej, J.: Operations on unambiguous finite automata. Int. J. Found. Comput. Sci. 29(5), 861–876 (2018)
Karmarkar, H., Joglekar, M., Chakraborty, S.: Improved upper and lower bounds for Büchi disambiguation. In: Proceedings of the Automated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013 (2013)
Kiefer, S., Widdershoven, C.: Image-binary automata (extended version of a DCFS’21 paper). arXiv:2109.01049 (2021), http://arxiv.org/abs/2109.01049
Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16(5), 975–984 (2005)
Löding, C., Pirogov, A.: On finitely ambiguous Büchi automata. In: International Conference on Developments in Language Theory, LNCS, pp. 503–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-09698-8
Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)
Paz, A.: Introduction to Probabilistic Automata. Academic Press, New York (2014)
Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
Raskin, M.: A superpolynomial lower bound for the size of non-deterministic complement of an unambiguous automaton. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018) (2018)
Safra, S.: On the complexity of omega-automata. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, pp. 319–327 (1988)
Schützenberger, M.: On the definition of a family of automata. Inf. Control 4(2), 245–270 (1961)
Tzeng, W.G.: On path equivalence of nondeterministic finite automata. Inf. Process. Lett. 58(1), 43–46 (1996)
Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoret. Comput. Sci. 88(2), 325–349 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Kiefer, S., Widdershoven, C. (2021). Image-Binary Automata. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-93489-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93488-0
Online ISBN: 978-3-030-93489-7
eBook Packages: Computer ScienceComputer Science (R0)