Skip to main content

A Conceptual Design and Control of a Novel Powered Ankle–Foot Prosthesis (RoMicP™) for Heavy Amputees

  • Conference paper
  • First Online:
6th Kuala Lumpur International Conference on Biomedical Engineering 2021 (BIOMED 2021)

Abstract

A novel powered ankle–foot prosthesis (RoMicP™) is designed for heavy amputees. A novel elastic actuator, namely, a unidirectional parallel elastic actuator with series elastic element (SE+UPEA), is implemented by the employment of a harmonic reducer and a two-level cable-drive system and the application of planar torsional springs. The results of mechanical design declare that the designed structure can achieve outstanding performance on both the height of installation position and the motion range of the ankle joint. The mass of all mechanical components can meet the requirements of design. A double-loop impedance control system is developed with two constant parameters and two time-varying parameters. With optimal parameters of parallel and series springs and tuned parameters of the control system, RoMicP™ is verified by simulation under different loads. The simulation results show that the performance is remarkable in tracking the ankle position reference with small errors during walking on level ground, where the torque load on the ankle is equivalent to that of an amputee whose weight is 100 kg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, J., Abu Osman, N.A., Al Kouzbary, M., Al Kouzbary, H., Abd Razak, N.A., Shasmin, H.N., Arifin, N.: Classification and comparison of mechanical design of powered ankle–foot prostheses for transtibial amputees developed in the 21st century: a systematic review. J. Med. Dev. 15(1), 010801 (2021)

    Google Scholar 

  2. Eilenberg, M.F., Geyer, H., Herr, H.: Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 164–173 (2010)

    Article  Google Scholar 

  3. Agboola-Dobson, A., Wei, G., Ren, L.: Biologically inspired design and development of a variable stiffness powered ankle-foot prosthesis. J. Mech. Robot. 11(4), 041012 (2019)

    Google Scholar 

  4. Bartlett, H.L., Lawson, B.E., Goldfarb, M.: Design, control, and preliminary assessment of a multifunctional semipowered ankle prosthesis. IEEE/ASME Trans. Mechatron. 24(4), 1532–1540 (2019)

    Article  Google Scholar 

  5. Jimenez-Fabian, R., Flynn, L., Geeroms, J., Vitiello, N., Vanderborght, B., Lefeber, D.: Sliding-bar MACCEPA for a powered ankle prosthesis. J. Mech. Robot. 7(4), 041011 (2015)

    Google Scholar 

  6. Liu, J., Abu Osman, N.A., Al Kouzbary, M., Al Kouzbary, H., Abd Razak, N.A., Shasmin, H.N., Arifin, N.: Optimization and comparison of typical elastic actuators in powered ankle-foot prosthesis. Int. J. Control, Autom. Syst. (Accepted)

    Google Scholar 

  7. Zhu, J., Wang, Q., Wang, L.: On the design of a powered transtibial prosthesis with stiffness adaptable ankle and toe joints. IEEE Trans. Industr. Electron. 61(9), 4797–4807 (2014)

    Article  Google Scholar 

  8. Yuan, K., Wang, Q., Zhu, J., Wang, L.: A hierarchical control scheme for smooth transitions between level ground and ramps with a robotic transtibial prosthesis. IFAC Proc. 47(3), 3527–3532 (2014)

    Google Scholar 

  9. Gao, F., Liu, Y., Liao, W.H.: Implementation and testing of ankle-foot prosthesis with a new compensated controller. IEEE/ASME Trans. Mechatron. 24(4), 1775–1784 (2019)

    Article  Google Scholar 

  10. Ficanha, E.M., Rastgaar, M., Kaufman, K.R.: Control of a 2-DOF powered ankle-foot mechanism. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 6439–6444 (2015)

    Google Scholar 

  11. Mai, A., Commuri, S.: Intelligent control of a prosthetic ankle joint using gait recognition. Control. Eng. Pract. 49, 1–13 (2016)

    Article  Google Scholar 

  12. Yuan, L., Hu, B., Wei, K. and Chen, S.: Control principle of modern permanent magnet synchronous motor and simulation in MATLAB. Beihang University Press, Beijing, China (2016)

    Google Scholar 

  13. EC-i 52 Datasheet. https://www.maxongroup.com/medias/sys_master/root/8882560892958/EN-21-281.pdf

  14. Winter, D.A.: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. University of Waterloo Press, Waterloo, Canada (1991)

    Google Scholar 

  15. Rouse, E.J., Hargrove, L.J., Perreault, E.J., Kuiken, T.A.: Estimation of human ankle impedance during the stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4), 870–878 (2014)

    Article  Google Scholar 

  16. Shorter, A.L., Rouse, E.J.: Mechanical impedance of the ankle during the terminal stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 26(1), 135–143 (2017)

    Article  Google Scholar 

  17. Lee, H., Hogan, N.: Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 755–764 (2014)

    Article  Google Scholar 

  18. Al Kouzbary, M., Abu Osman, N.A., Abdul Wahab, A.K.: Sensorless control system for assistive robotic ankle-foot. Int. J. Adv. Rob. Syst. 15(3), 1729881418775854 (2018)

    Google Scholar 

  19. Al Kouzbary, M., Abu Osman, N.A., Al Kouzbary, H., Shasmin, H.N., Arifin, N.: Towards universal control system for powered ankle-foot prosthesis: a simulation study. Int. J. Fuzzy Syst. 22(4), 1299–1313 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Azuan Abu Osman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J. et al. (2022). A Conceptual Design and Control of a Novel Powered Ankle–Foot Prosthesis (RoMicP™) for Heavy Amputees. In: Usman, J., Liew, Y.M., Ahmad, M.Y., Ibrahim, F. (eds) 6th Kuala Lumpur International Conference on Biomedical Engineering 2021. BIOMED 2021. IFMBE Proceedings, vol 86 . Springer, Cham. https://doi.org/10.1007/978-3-030-90724-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90724-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90723-5

  • Online ISBN: 978-3-030-90724-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics