Skip to main content

XCAT-GAN for Synthesizing 3D Consistent Labeled Cardiac MR Images on Anatomically Variable XCAT Phantoms

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Abstract

Generative adversarial networks (GANs) have provided promising data enrichment solutions by synthesizing high-fidelity images. However, generating large sets of labeled images with new anatomical variations remains unexplored. We propose a novel method for synthesizing cardiac magnetic resonance (CMR) images on a population of virtual subjects with a large anatomical variation, introduced using the 4D eXtended Cardiac and Torso (XCAT) computerized human phantom. We investigate two conditional image synthesis approaches grounded on a semantically-consistent mask-guided image generation technique: 4-class and 8-class XCAT-GANs. The 4-class technique relies on only the annotations of the heart; while the 8-class technique employs a predicted multi-tissue label map of the heart-surrounding organs and provides better guidance for our conditional image synthesis. For both techniques, we train our conditional XCAT-GAN with real images paired with corresponding labels and subsequently at the inference time, we substitute the labels with the XCAT derived ones. Therefore, the trained network accurately transfers the tissue-specific textures to the new label maps. By creating 33 virtual subjects of synthetic CMR images at the end-diastolic and end-systolic phases, we evaluate the usefulness of such data in the downstream cardiac cavity segmentation task under different augmentation strategies. Results demonstrate that even with only 20% of real images (40 volumes) seen during training, segmentation performance is retained with the addition of synthetic CMR images. Moreover, the improvement in utilizing synthetic images for augmenting the real data is evident through the reduction of Hausdorff distance up to 28% and an increase in the Dice score up to 5%, indicating a higher similarity to the ground truth in all dimensions.

S. Amirrajab, S. Abbasi-Sureshjani, Y. Al Khalil—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All data used in this study were obtained with the required approvals and patient consent.

References

  1. Abbasi-Sureshjani, S., Amirrajab, S., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M.: 4D semantic cardiac magnetic resonance image synthesis on XCAT anatomical model. In: Medical Imaging with Deep Learning (2020)

    Google Scholar 

  2. Amirrajab, S., Al Khalil, Y., Lorenz, C., Weese, J., Breeuwer, M.: Towards generating realistic and hetrogeneous cardiac magnetic resonance simulated image database for deep learning based image segmentation algorithms. Proceedings of the 12th Annual Meeting ISMRM Benelux Chapter 2020, P-077 (2020)

    Google Scholar 

  3. Andreopoulos, A., Tsotsos, J.K.: Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med. Image Anal. 12(3), 335–357 (2008)

    Article  Google Scholar 

  4. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  5. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  6. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1

    Chapter  Google Scholar 

  7. Chen, C., et al.: Unsupervised multi-modal style transfer for cardiac MR segmentation. arXiv e-prints arXiv:1908.07344 (Aug 2019)

  8. Corral Acero, J., et al.: SMOD - data augmentation based on statistical models of deformation to enhance segmentation in 2D cine cardiac MRI. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 361–369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_39

    Chapter  Google Scholar 

  9. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates Inc., New York (2014)

    Google Scholar 

  10. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  11. Isensee, F., Petersen, J., Kohl, S.A.A., Jäger, P.F., Maier-Hein, K.: nnU-Net: breaking the spell on successful medical image segmentation. ArXiv abs/1904.08128 (2019)

    Google Scholar 

  12. Joyce, T., Kozerke, S.: 3D medical image synthesis by factorised representation and deformable model learning. In: Burgos, N., Gooya, A., Svoboda, D. (eds.) SASHIMI 2019. LNCS, vol. 11827, pp. 110–119. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32778-1_12

    Chapter  Google Scholar 

  13. Kazeminia, S., et al.: Gans for medical image analysis (2018)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv e-prints arXiv:1312.6114, December 2013

  15. Ma, C., Ji, Z., Gao, M.: Neural style transfer improves 3D cardiovascular MR image segmentation on inconsistent data. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 128–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_15

    Chapter  Google Scholar 

  16. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 2332–2341. IEEE Computer Society, June 2019

    Google Scholar 

  17. Pfeiffer, M., et al.: Generating large labeled data sets for laparoscopic image processing tasks using unpaired image-to-image translation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 119–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_14

    Chapter  Google Scholar 

  18. Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI, July 2009

    Google Scholar 

  19. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  20. Segars, W., Sturgeon, G., Mendonca, S., Grimes, J., Tsui, B.M.: 4D XCAT phantom for multimodality imaging research. Med. Phys. 37(9), 4902–4915 (2010)

    Article  Google Scholar 

  21. Tang, Y.B., Oh, S., Tang, Y.X., Xiao, J., Summers, R.M.: CT-realistic data augmentation using generative adversarial network for robust lymph node segmentation. In: Mori, K., Hahn, H.K. (eds.) Medical Imaging 2019: Computer-Aided Diagnosis, vol. 10950, pp. 976–981. International Society for Optics and Photonics, SPIE (2019)

    Google Scholar 

  22. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807, June 2018

    Google Scholar 

  23. Wissmann, L., Santelli, C., Segars, W.P., Kozerke, S.: MRXCAT: realistic numerical phantoms for cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 16(1), 63 (2014)

    Article  Google Scholar 

  24. Wu, Z., Wang, X., Gonzalez, J.E., Goldstein, T., Davis, L.S.: ACE: adapting to changing environments for semantic segmentation. CoRR abs/1904.06268 (2019)

    Google Scholar 

  25. Yasaka, K., Abe, O.: Deep learning and artificial intelligence in radiology: current applications and future directions. PLOS Med. 15(11), 1–4 (2018)

    Article  Google Scholar 

  26. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging: a review. Med. Image Anal. 58, 101552 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This research is a part of the openGTN project, supported by the European Union in the Marie Curie Innovative Training Networks (ITN) fellowship program under project No. 764465.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Amirrajab .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 355 KB)

Supplementary material 2 (mp4 356 KB)

Supplementary material 3 (pdf 178 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amirrajab, S. et al. (2020). XCAT-GAN for Synthesizing 3D Consistent Labeled Cardiac MR Images on Anatomically Variable XCAT Phantoms. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12264. Springer, Cham. https://doi.org/10.1007/978-3-030-59719-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59719-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59718-4

  • Online ISBN: 978-3-030-59719-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics