Abstract
Transferring human movements to robotic systems is of high interest to equip the systems with new behaviors without expert knowledge. Typically, skills are often only learned for a very specific setup and a certain robot. We propose a modular framework to learn skills that is applicable on different robotic systems without adaptations. Our work builds on the recently introduced BesMan Learning Platform, which comprises the full workflow to transfer human demonstrations to a system, including automatized behavior segmentation, imitation learning, reinforcement learning for motion refinement, and methods to generalize to related tasks. For this paper, we extend this approach in order that different skills can be imitated by various systems in an automated fashion with a minimal amount of configuration, e.g., definition of the target system and environment. For this, we focus on the imitation of the demonstrated movements and show their transferability without movement refinement. We demonstrate the generality of the approach on a large dataset, consisting of about 700 throwing demonstrations. Nearly all of these human demonstrations are successfully transferred to four different robot target systems, namely Universal Robot’s UR5 and UR10, KUKA LBR iiwa, and DFKI’s robot COMPI. An analysis of the quality of the imitated movement on the real UR5 robot shows that useful throws can be executed on the system which can be used as starting points for further movement refinement.
L. Gutzeit, A. Fabisch and C. Petzoldt have contributed equally as first authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use pytransform3d to calculate these transformations [4].
References
Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)
Bargsten, V., de Gea Fernández, J.: Compi: Development of a 6-DOF compliant robot arm for human-robot cooperation. In: Proceedings of the 8th International Workshop on Human-Friendly Robotics. Technische Universitaet Muenchen (TUM) (2015)
Fabisch, A.: A Comparison of Policy Search in Joint Space and Cartesian Space for Refinement of Skills. In: Berns, K., Görges, D. (eds.) RAAD 2019. AISC, vol. 980, pp. 301–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19648-6_35
Fabisch, A.: pytransform3d: 3D transformations for python. J. Open Source Softw. 4, 1159 (2019). https://doi.org/10.21105/joss.01159
Gleicher, M.: Retargetting motion to new characters. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1998, pp. 33–42. ACM, New York (1998). https://doi.org/10.1145/280814.280820
Gutzeit, L., Otto, M., Kirchner, E.A.: Simple and robust automatic detection and recognition of human movement patterns in tasks of different complexity. In: Physiological Computing Systems. Springer (2019, submitted)
Gutzeit, L., et al.: The BesMan learning platform for automated robot skill learning. Front. Robot. AI 5, 43 (2018). https://doi.org/10.3389/frobt.2018.00043
Gutzeit, L., Kirchner, E.A.: Automatic detection and recognition of human movement patterns in manipulation tasks. In: Proceedings of the 3rd International Conference on Physiological Computing Systems (2016)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9, 159–195 (2001)
Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)
Maeda, G.J., Ewerton, M., Koert, D., Peters, J.: Acquiring and generalizing the embodiment mapping from human observations to robot skills. IEEE Robot. Autom. Lett. (RA-L) 1(2), 784–791 (2016). https://doi.org/10.1109/LRA.2016.2525038
Michieletto, S., Chessa, N., Menegatti, E.: Learning how to approach industrial robot tasks from natural demonstrations. In: 2013 IEEE Workshop on Advanced Robotics and its Social Impacts, pp. 255–260, November 2013. https://doi.org/10.1109/ARSO.2013.6705538
Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981)
Nehaniv, C.L., Dautenhahn, K., Dautenhahn, K.: Imitation in Animals and Artifacts. MIT Press, Cambridge (2002)
Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by learning from demonstration. In: IEEE International Conference on Robotics and Automation, pp. 763–768 (2009)
Pollard, N.S., Hodgins, J.K., Riley, M.J., Atkeson, C.G.: Adapting human motion for the control of a humanoid robot. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292). vol. 2, pp. 1390–1397, May 2002. https://doi.org/10.1109/ROBOT.2002.1014737
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055
Senger, L., Schröer, M., Metzen, J.H., Kirchner, E.A.: Velocity-based multiple change-point inference for unsupervised segmentation of human movement behavior. In: Proceedings of the 22th International Conference on Pattern Recognition (ICPR2014), pp. 4564–4569 (2014). https://doi.org/10.1109/ICPR.2014.781
Acknowledgements
This work was supported through grants from the German Federal Ministry for Economic Affairs and Energy (BMWi, No 50RA1703, No 50RA1701), one grant from the European Union’s Horizon 2020 research and innovation program (No H2020-FOF 2016 723853), and part of the work was done in a collaboration with Intel Labs China. We would like to thank Intel Corp. for financial support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gutzeit, L., Fabisch, A., Petzoldt, C., Wiese, H., Kirchner, F. (2019). Automated Robot Skill Learning from Demonstration for Various Robot Systems. In: Benzmüller, C., Stuckenschmidt, H. (eds) KI 2019: Advances in Artificial Intelligence. KI 2019. Lecture Notes in Computer Science(), vol 11793. Springer, Cham. https://doi.org/10.1007/978-3-030-30179-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-30179-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30178-1
Online ISBN: 978-3-030-30179-8
eBook Packages: Computer ScienceComputer Science (R0)