Abstract
In A naturalistic open source movie for optical flow evaluation, Butler et al. create a database of ground-truth optical flow from the computer-generated video Sintel. We study the high-contrast \(3\times 3\) patches from this video, and provide evidence that this dataset is well-modeled by a torus (a nonlinear 2-dimensional manifold). Our main tools are persistent homology and zigzag persistence, which are popular techniques from the field of computational topology. We show that the optical flow torus model is naturally equipped with the structure of a fiber bundle, which is furthermore related to the statistics of range images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A range image contains a distance at each pixel.
References
Adams, H., Atanasov, A., Carlsson, G.: Nudged elastic band in topological data analysis. Topological Methods Nonlinear Anal. 45(1), 247–272 (2015)
Adams, H., Carlsson, G.: On the nonlinear statistics of range image patches. SIAM J. Imaging Sci. 2(1), 110–117 (2009)
Adams, H., et al.: Persistence images: a vector representation of persistent homology. J. Mach. Learn. Res. 18(8), 1–35 (2017)
Armstrong, M.A.: Basic Topology. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4757-1793-8
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92(1), 1–31 (2011)
Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: 2009 International Conference on Image Analysis and Signal Processing, IASP 2009, pp. 233–236. IEEE (2009)
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
Baryshnikov, Y., Ghrist, R.: Target enumeration via euler characteristic integrals. SIAM J. Appl. Math. 70(3), 825–844 (2009)
Bauer, U.: Ripser: a lean C++ code for the computation of Vietoris-Rips persistence barcodes. Software (2017). https://github.com/Ripser/ripser
Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Comput. Surv. (CSUR) 27(3), 433–466 (1995)
Bendich, P., Marron, J.S., Miller, E., Pieloch, A., Skwerer, S.: Persistent homology analysis of brain artery trees. Ann. Appl. Stat. 10(1), 198 (2016)
Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)
Burghelea, D., Dey, T.K.: Topological persistence for circle-valued maps. Discrete Comput. Geom. 50(1), 69–98 (2013)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
Carlsson, G., De Silva, V., Morozov, D.: Zigzag persistent homologyand real-valued functions. In: Proceedings of the Twenty-Fifth annual Symposium on Computational Geometry, pp. 247–256. ACM (2009)
Carlsson, G., Ishkhanov, T., De Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)
Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10(4), 367–405 (2010)
Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-6_32
De Silva, V., Carlsson, G.: Topological estimation using witness complexes. SPBG 4, 157–166 (2004)
Edelsbrunner, H., Harer, J.L.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: 2000 Proceedings of 41st Annual Symposium on Foundations of Computer Science, pp. 454–463. IEEE (2000)
Fleet, D., Weiss, Y.: Optical flow estimation. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 237–257. Springer, Boston (2006). https://doi.org/10.1007/0-387-28831-7_15
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)
Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
Huang, J., Lee, A.B., Mumford, D.B.: Statistics of range images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 324–332 (2000)
Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)
Lum, P., et al.: Extracting insights from the shape of complex data using topology. Sci. Rep. 3, 1236 (2013)
Mac Aodha, O., Humayun, A., Pollefeys, M., Brostow, G.J.: Learning a confidence measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1107–1120 (2013)
Morozov, D.: Dionysus. http://www.mrzv.org/software/dionysus2/
Roosendaal, T.: Sintel. Blender Foundation, Durian Open Movie Project (2010). http://www.sintel.org/
Roth, S., Black, M.J.: On the spatial statistics of optical flow. Int. J. Comput. Vis. 74(1), 33–50 (2007)
de Silva, V., Ghrist, R.: Coordinate-free coverage in sensor networks with controlled boundaries via homology. Int. J. Robot. Res. 25(12), 1205–1222 (2006)
Topaz, C.M., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation models. PloS One 10(5), e0126383 (2015)
Xia, K., Wei, G.W.: Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Methods Biomed. Eng. 30(8), 814–844 (2014)
Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)
Acknowledgements
We would like to thank Gunnar Carlsson, Bradley Nelson, Jose Perea, and Guillermo Sapiro for helpful conversations.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Adams, H., Bush, J., Carr, B., Kassab, L., Mirth, J. (2019). On the Nonlinear Statistics of Optical Flow. In: Marfil, R., CalderĂłn, M., DĂaz del RĂo, F., Real, P., Bandera, A. (eds) Computational Topology in Image Context. CTIC 2019. Lecture Notes in Computer Science(), vol 11382. Springer, Cham. https://doi.org/10.1007/978-3-030-10828-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-10828-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-10827-4
Online ISBN: 978-3-030-10828-1
eBook Packages: Computer ScienceComputer Science (R0)