Abstract
The data FAIR Guiding Principles state that all data should be Findable, Accessible, Interoperable, and Reusable. Ontology is critical to data integration, sharing, and analysis. Given thousands of ontologies have been developed in the era of artificial intelligence, it is critical to have interoperable ontologies to support standardized data and knowledge presentation and reasoning. For interoperable ontology development, the eXtensible ontology development (XOD) strategy offers four principles including ontology term reuse, semantic alignment, ontology design pattern usage, and community extensibility. Many software programs are available to help implement these principles. As a demonstration, the XOD strategy is applied to developing the interoperable Coronavirus Infectious Disease Ontology (CIDO). Various applications of interoperable ontologies, such as COVID-19 and kidney precision medicine research, are also introduced in this chapter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wilkinson MD, Dumontier M, Aalbersberg IJ et al (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18
Hoehndorf R, Schofield PN, Gkoutos GV (2015) The role of ontologies in biological and biomedical research: a functional perspective. Brief Bioinform 16(6):1069–1080. https://doi.org/10.1093/bib/bbv011
Bodenreider O (2008) Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb Med Inform:67–79
Schulz S, Balkanyi L, Cornet R et al (2013) From concept representations to ontologies: a paradigm shift in health informatics? Healthc Inform Res 19(4):235–242. https://doi.org/10.4258/hir.2013.19.4.235
Gonzalez-Beltran A, Maguire E, Sansone SA et al (2014) linkedISA: semantic representation of ISA-Tab experimental metadata. BMC Bioinformatics 15(Suppl 14):S4. https://doi.org/10.1186/1471-2105-15-S14-S4
Malladi VS, Erickson DT, Podduturi NR et al (2015) Ontology application and use at the ENCODE DCC. Database (Oxford) 2015:bav010. https://doi.org/10.1093/database/bav010
Dugan VG, Emrich SJ, Giraldo-Calderon GI et al (2014) Standardized metadata for human pathogen/vector genomic sequences. PLoS One 9(6):e99979. https://doi.org/10.1371/journal.pone.0099979
Stodden V, Guo P, Ma Z (2013) Toward reproducible computational research: an empirical analysis of data and code policy adoption by journals. PLoS One 8(6):e67111. https://doi.org/10.1371/journal.pone.0067111
Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556
Bandrowski A, Brinkman R, Brochhausen M et al (2016) The ontology for biomedical investigations. PLoS One 11(4):e0154556. https://doi.org/10.1371/journal.pone.0154556
Brinkman RR, Courtot M, Derom D et al (2010) Modeling biomedical experimental processes with OBI. J Biomed Semantics 1(Suppl 1):S7. https://doi.org/10.1186/2041-1480-1-S1-S7
Whetzel PL, Noy NF, Shah NH et al (2011) BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications. Nucleic Acids Res 39(Web Server issue):W541–W545. https://doi.org/10.1093/nar/gkr469
Ong E, Xiang Z, Zhao B et al (2017) Ontobee: a linked ontology data server to support ontology term dereferencing, linkage, query and integration. Nucleic Acids Res 45(D1):D347–D352. https://doi.org/10.1093/nar/gkw918
Cote RG, Jones P, Martens L et al (2008) The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Res 36(Web Server issue):W372–W376. https://doi.org/10.1093/nar/gkn252
Hoehndorf R, Slater L, Schofield PN et al (2015) Aber-OWL: a framework for ontology-based data access in biology. BMC Bioinformatics 16:26. https://doi.org/10.1186/s12859-015-0456-9
Smith B, Ashburner M, Rosse C et al (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251–1255. https://doi.org/10.1038/nbt1346
He Y, Xiang Z, Zheng J et al (2018) The eXtensible Ontology Development (XOD) principles and tool implementation to support ontology interoperability. J Biomed Semantics 9(1):3. https://doi.org/10.1186/s13326-017-0169-2
Xiang Z, Zheng J, Lin Y et al (2015) Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns. J Biomed Semantics 6(1):4. https://doi.org/10.1186/2041-1480-6-4
Xiang Z, Courtot M, Brinkman RR et al (2010) OntoFox: web-based support for ontology reuse. BMC Res Notes 3:175. https://doi.org/10.1186/1756-0500-3-175. 1756-0500-3-175 [pii]
Zheng J, Xiang Z, Stoeckert CJ Jr et al (2014) Ontodog: a web-based ontology community view generation tool. Bioinformatics 30(9):1340–1342. https://doi.org/10.1093/bioinformatics/btu008
Jackson RC, Balhoff JP, Douglass E et al (2019) ROBOT: a tool for automating ontology workflows. BMC Bioinformatics 20(1):407. https://doi.org/10.1186/s12859-019-3002-3
Overton JA, Dietze H, Essaid S et al (2015) ROBOT: a command-line tool for ontology development. In: Proceedings of the 2015 international conference on biomedical ontologies (ICBO), Lisbon, Portugal, July 27-30, 2015, vol 1515, pp 1–2. http://ceur-ws.org/Vol-1515/demo1516.pdf
He Y, Yu H, Ong E et al (2020) CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Sci Data 7(1):181. https://doi.org/10.1038/s41597-020-0523-6
NCBITaxon: an ontology representation of the NCBI organismal taxonomy. http://obofoundry.org/ontology/ncbitaxon.html
Babcock S, Cowell LG, Smith B (2020) The infectious disease ontology in 2020. BioRxiv: submitted on April 12, 2020. BIORXIV/2020/038224
Kibbe WA, Arze C, Felix V et al (2015) Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Research 43(Database issue):D1071–D1078. https://doi.org/10.1093/nar/gku1011
Groza T, Kohler S, Moldenhauer D et al (2015) The human phenotype ontology: semantic unification of common and rare disease. Am J Hum Genet 97(1):111–124. https://doi.org/10.1016/j.ajhg.2015.05.020
PATO—phenotypic quality ontology. https://github.com/pato-ontology/pato/
Mungall CJ, Torniai C, Gkoutos GV et al (2012) Uberon, an integrative multi-species anatomy ontology. Genome Biol 13(1):R5. https://doi.org/10.1186/gb-2012-13-1-r5
Diehl AD, Meehan TF, Bradford YM et al (2016) The cell ontology 2016: enhanced content, modularization, and ontology interoperability. J Biomed Semantics 7(1):44. https://doi.org/10.1186/s13326-016-0088-7
Natale DA, Arighi CN, Blake JA et al (2014) Protein ontology: a controlled structured network of protein entities. Nucleic Acids Res 42(Database issue):D415–D421. https://doi.org/10.1093/nar/gkt1173
He Y (2013) Announcement of the Ontology of Genes and Genomes (OGG). https://groups.google.com/forum/#!topic/ogg-discuss/wy0132CCdNA
Hastings J, Owen G, Dekker A et al (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44(D1):D1214–D1219. https://doi.org/10.1093/nar/gkv1031
Musen MA (2015) The Protégé project: a look back and a look forward. AI Matter 1(4):4–12. https://doi.org/10.1145/2557001.25757003
Horridge M, Tudorache T, Nuylas C et al (2014) WebProtege: a collaborative web-based platform for editing biomedical ontologies. Bioinformatics 30(16):2384–2385. https://doi.org/10.1093/bioinformatics/btu256
Ong E, He Y (2016) Community-based ontology development, annotation and discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia. In: AMIA joint summits on translational science proceedings, 2016, pp 65–74
Liu Y, Chan W, Wang Z et al. (2020) Ontological and bioinformatic analysis of anti-coronavirus drugs and their implication for drug repurposing against COVID-19. Preprints:2020030413. https://doi.org/10.20944/preprints202003.0413.v1
He Y, Sarntivijai S, Lin Y et al (2014) OAE: the ontology of adverse events. J Biomed Semantics 5:29. https://doi.org/10.1186/2041-1480-5-29
Sarntivijai S, Lin Y, Xiang Z et al (2014) CLO: the cell line ontology. J Biomed Semantics 5:37. https://doi.org/10.1186/2041-1480-5-37
He Y, Wang H, Zheng J et al (2019) OHMI: the ontology of host-microbiome interactions. J Biomed Semantics 10(1):25. https://doi.org/10.1186/s13326-019-0217-1
He Y, Steck B, Ong E et al (2018) KTAO: a kidney tissue atlas ontology to support community-based kidney knowledge base development and data integration. In: International conference on biomedical ontology 2018 (ICBO-2018), Corvallis, Oregon, USA, August 7–10, 2018, pp 1–6
He Y, Ong E, Schaub J et al (2019) OPMI: the ontology of precision medicine and investigation and its support for clinical data and metadata representation and analysis. In: The 10th international conference on biomedical ontology (ICBO-2019), July 30–August 2, Buffalo, NY, USA, 2019, pp 1–10
Ong E, Wang LL, Schaub J et al (2020) Modelling kidney disease using ontology: insights from the Kidney Precision Medicine Project. Nat Rev Nephrol 16(11):686–696. https://doi.org/10.1038/s41581-020-00335-w
Huffman A, Masci AM, Zheng J, Sanati N, Brunson T, Wu G, He Y. CIDO ontology updates and secondary analysis of host responses to COVID-19 infection based on ImmPort reports and literature. J Biomed Semant 12, 18 (2021). https://doi.org/10.1186/s13326-021-00250-4. PMID:34454610. PMCID: PMC8400831.
Acknowledgments
This work was supported by NIH-NIAID grants 1R01AI081062 and 1UH2AI13293. Dr. Junguk Hur’s review and editing are appreciated.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
He, Y. (2022). Development and Applications of Interoperable Biomedical Ontologies for Integrative Data and Knowledge Representation and Multiscale Modeling in Systems Medicine. In: Bai, J.P., Hur, J. (eds) Systems Medicine. Methods in Molecular Biology, vol 2486. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2265-0_12
Download citation
DOI: https://doi.org/10.1007/978-1-0716-2265-0_12
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-2264-3
Online ISBN: 978-1-0716-2265-0
eBook Packages: Springer Protocols