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Abstract

We study universal consistency and convergence rates of simple nearest-neighbor prototype
rules for the problem of multiclass classification in metric spaces. We first show that a novel
data-dependent partitioning rule, named Proto-NN, is universally consistent in any metric
space that admits a universally consistent rule. Proto-NN is a significant simplification of
OptiNet, a recently proposed compression-based algorithm that, to date, was the only al-
gorithm known to be universally consistent in such a general setting. Practically, Proto-NN
is simpler to implement and enjoys reduced computational complexity.

We then proceed to study convergence rates of the excess error probability. We first
obtain rates for the standard k-NN rule under a margin condition and a new generalized-
Lipschitz condition. The latter is an extension of a recently proposed modified-Lipschitz
condition from Rd to metric spaces. Similarly to the modified-Lipschitz condition, the
new condition avoids any boundness assumptions on the data distribution. While obtain-
ing rates for Proto-NN is left open, we show that a second prototype rule that hybridizes
between k-NN and Proto-NN achieves the same rates as k-NN while enjoying similar com-
putational advantages as Proto-NN. However, as k-NN, this hybrid rule is not consistent
in general.

Keywords: universal consistency, rate of convergence, multiclass classification, error
probability, k-nearest-neighbor rule, prototype nearest-neighbor rule, metric space

1. Introduction

Let (X , ρ) be a separable metric space, equipped with its Borel σ-field (Cover and Hart,
1967). Assume that the feature element X takes values in X and let its label Y take values
in Y = {1, . . . ,M}. The error probability of an arbitrary decision function g : X → Y is

L(g) = P{g(X) 6= Y }.

Denote by ν the unknown probability distribution of (X,Y ) and let

Pj(x) = P{Y = j | X = x}, j ∈ Y.
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Then the Bayes decision,

g∗(x) = arg max
j∈Y

Pj(x),

minimizes the error probability. This optimal error is denoted by

L∗ = P{g∗(X) 6= Y }.

In the standard model of pattern recognition, we are given labeled samples, Dn =
{(X1, Y1), . . . , (Xn, Yn)}, which are n independent copies of (X,Y ). Based on Dn, one can
estimate the regression functions Pj by Pj,n, j ∈ Y, and the plug-in classification rule gn
derived from Pj,n is

gn(x) = arg max
j∈Y

Pj,n(x).

The classifier gn is weakly consistent for the distribution ν if

lim
n→∞

E{L(gn)} = L∗.

It is strongly consistent for ν if

P{ lim
n→∞

L(gn) = L∗} = 1.

The classifier gn is universally consistent in the metric space (X , ρ) if it is consistent for
any distribution ν over the Borel σ-field.

Following the pioneering work of Cover and Hart (1967) and Stone (1977) on nearest-
neighbor classification, Zhao (1987); Devroye et al. (1996); Györfi et al. (2006) showed
that the k-nearest neighbor rule (k-NN) is universally strongly consistent in the Euclidean
space (Rd, ‖·‖2) provided that k → ∞ and k/n → 0 as n → ∞. Kernel-based and various
partitioning rules were shown to be universally consistent in Rd as well (Devroye et al.,
1996). For more general (and, in particular, infinite-dimensional) metric spaces, Cérou and
Guyader (2006); Forzani et al. (2012) characterized the consistency of the k-NN rule in
terms of a Besicovitch-type condition. In particular, Cérou and Guyader (2006) showed
that in the binary case, |Y| = 2, a sufficient condition for the k-NN classifier to be weakly
consistent for ν is

lim
r→0+

P

{
1

µ(SX,r)

∫
SX,r

|Pj(z)− Pj(X)|µ(dz) > ε

}
= 0. (1)

Here, Sx,r = {z ∈ X : ρ(x, z) ≤ r} denotes the closed ball centered at x and having radius
r and µ is the marginal distribution of X. It was also shown in Cérou and Guyader (2006)
that in the realizable case, where P1(x) ∈ {0, 1} for all x ∈ X, a violation of (1) implies
that k-NN is inconsistent (see also Cesari and Colomboni (2021)). Abraham et al. (2006)
established the strong consistency of a generalized moving-window rule under the same
condition (1).

By Besicovitch’s density theorem (Federer, 1969), in Rd—and more generally in any
finite-dimensional normed space—condition (1) holds for all distributions ν. However, in
infinite-dimensional spaces this condition may be violated (Preiss, 1979, 1981). As such, the
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k-NN and the moving-window classifiers are not universally consistent in general separable
metric spaces. This violation is not an isolated pathology, occurring, for example, in the
commonly used separable Gaussian Hilbert spaces (Tǐser, 2003). Leveraging the consistency
of k-NN in finite dimensions, the filtering technique (i.e., taking the first dn coordinates
in some basis representation for an appropriate dn) was shown to be universally weakly
consistent by Biau et al. (2005). However, that technique is only applicable in Hilbert
spaces, as opposed to more general metric spaces.

Up until recently, sufficient and necessary conditions on a metric space under which
a universally consistent rule exists in it was an open problem. Building upon the results
of Kontorovich and Weiss (2014); Kontorovich et al. (2017) it has been recently shown by
Hanneke et al. (2021) that a compression-based prototype classification rule named OptiNet
is universally strongly consistent in any separable metric space (for example, the space
Lp([a, b]) is a metric space for any p ≥ 1 and is separable for 1 ≤ p <∞ and non-separable
for p = ∞). Moreover, OptiNet was shown to be universally strongly consistent in any
metric space that admits a universally consistent classifier — the first algorithm known to
enjoy this property.

Arguably, OptiNet is a rather complex algorithm (see Section 2). The first main result of
this paper (Corollary 4) distills the core arguments used to establish OptiNet’s consistency
and shows that a novel, much simpler classification rule is universally strongly consistent in
any metric space that admits a universally consistent classifier. In addition, its consistency
proof is much simpler than that of OptiNet and its implementation is trivial. As OptiNet,
this algorithm, henceforth termed Proto-NN (and formally presented in Section 2), is a pro-
totype algorithm and has the advantage of reduced computational complexity. Concerning
some other prototype nearest-neighbor rules, see Devroye et al. (1996, §19.3).

Another important property of a classification rule is the rate at which the excess error
probability E{L(gn)} −L∗ convergences to 0 as n→∞. For any classification rule gn, this
rate can be arbitrarily slow without further assumptions on the unknown data distribution
(Devroye et al., 1996). So to obtain a non-trivial rate of convergence one typically assumes
that ν belongs to a large class of distributions meeting some smoothness and tail conditions.

For the case X = Rd, rates of convergence for several algorithms were obtained under
a variety of conditions (Devroye et al., 1996; Györfi et al., 2006). A common assumption
is that the regression functions are Hölder-continuous, that is, there are some C > 0 and
0 < β ≤ 1 such that ∀x, z ∈ X ,

|Pj(x)− Pj(z)| ≤ Cρ(x, z)β. (2)

The case β = 1 is know as Lipschitz continuity. Denoting the support of µ by

supp(µ) = {x ∈ X : µ(Sx,r) > 0,∀r > 0},

it is well known (Györfi et al., 2006) that if supp(µ) is bounded and the regression function

is Hölder-continuous, then, for |Y| = 2, the k-NN rule with k = n
2β

2β+d achieves the rate

E{L(gk,n)} − L∗ = O(n
− β

2β+d ).

While this rate holds also for the more general problem of L1 real-valued bounded regression,
Mammen and Tsybakov (1999); Tsybakov (2004); Audibert and Tsybakov (2007) showed
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that for binary classification, faster rates can be achieved under an additional margin con-
dition. Recently, Xue and Kpotufe (2018); Puchkin and Spokoiny (2020) generalized the
margin condition to the multiclass setting.

Definition 1 Let P(1)(x) ≥ · · · ≥ P(M)(x) be the ordered values of P1(x), . . . , PM (x). Then
the margin condition means that there are some α > 0 and c∗ > 0 such that

P{P(1)(X)− P(2)(X) ≤ t} ≤ c∗tα, 0 < t ≤ 1. (3)

Assuming that the regression function is Hölder-continuous, that the margin condition
is satisfied, and that the marginal distribution µ of X has a density that satisfies the so
called strong density condition, Audibert and Tsybakov (2007); Kohler and Krzyzak (2007);
Gadat et al. (2016) showed that for the binary case, the k-NN rule and several other plug-in
estimators achieve the rate

E{L(gk,n)} − L∗ = O(n
−β(1+α)

2β+d ). (4)

Moreover, this rate was shown to be minimax optimal, meaning that, over the class of all
distributions meeting the aforementioned conditions, this rate is also a lower bound for any
classification rule. See Samworth (2012); Blaschzyk and Steinwart (2018) and references
therein for even faster rates under stronger conditions on the regression function.

The strong density condition under which the rates in (4) are established requires the
density function to be bounded away from zero over the support of µ; a highly restrictive
condition that does not hold for many distributions of practical interest. Recently, it has
been shown by Döring et al. (2017) that the same rates in (4) are obtained by replacing
the strong density condition, together with the Hölder condition (2), with a combined
smoothness and tail condition, named modified Lipschitz condition, given by

|Pj(x)− Pj(z)| ≤ Cµ(Sx,ρ(x,z))
β/d. (5)

Chaudhuri and Dasgupta (2014) considered the related condition that there are some γ > 0
and C∗ > 0 such that for all x in the support of µ,∣∣∣∣∣Pj(x)− 1

µ(Sx,r)

∫
Sx,r

Pj(z)dµ(z)

∣∣∣∣∣ ≤ C∗µ(Sox,r)
γ . (6)

Here, Sox,r = {z ∈ X : ρ(x, z) < r} denotes the open ball centered at x. They showed that in
the binary case, under condition (6) and the margin condition (3), the k-NN rule achieves

E{L(gk,n)} − L∗ = O(n
− γ(1+α)

2γ+1 ). (7)

Evidently, for X = Rd, the rates in (4) are revisited by setting γ = β/d. More generally,
condition (6) can be seen as a uniform Besicovitch condition and is a-priori applicable in any
separable metric space. In this paper, we further abstract the modified Lipschitz conditions
(5) and (6) and consider the following combined smoothness and tail condition.
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Definition 2 For each j ∈ Y, the function Pj satisfies the generalized Lipschitz con-
dition if there is a monotonically increasing function h : [0, 1]→ R+ with h(s) ↓ 0 as s ↓ 0
such that for any x, z ∈ X ,

|Pj(x)− Pj(z)| ≤ h(µ(Sx,ρ(x,z))). (8)

In Section 3, we first obtain rates for the k-NN rule under the generalized Lipschitz
condition and the margin condition in terms of the function h (Theorem 6). For the case

h(s) = C∗sγ (9)

we revisit the same rates as in (7). While obtaining rates for Proto-NN is left open, we
proceed to derive rates for a second novel prototype rule that hybridizes between Proto-NN
and k-NN (Theorem 7). This rule, which we call Proto-k-NN, allows a reduction in com-
putational complexity by compressing the data into m = O(n/k) prototypes while enjoying
the same rates as k-NN; see also Xue and Kpotufe (2018) for results in the same spirit.

On the generalized Lipschitz condition. Note that for condition (8) to be non-trivial,
the rate at which h(s) → 0 as s → 0 should appropriately reflect the geometry of X and
the class of distributions µ under consideration. Consider for example two distinct points
x, z ∈ Rd lying in a region where µ is uniformly distributed. Denoting the Lebesgue measure
by λ and abbreviating its measure on any ball by λ(Sx,r) = vd · rd, one can verify that for
any 0 < r � ρ(x, z), applying the triangle inequality for dρ(x, z)/re times over a path from
x to z, the generalized Lipschitz condition (8) implies that for some constant c > 0,

|Pj(x)− Pj(z)| ≤ c ·
(
ρ(x, z)

r

)
· h(λ(Sx,r)) = ρ(x, z) ·O

(
h(rd)

r

)
as r → 0.

Hence, to allow for non-constant regression functions, one needs h(λ(Sx,r)) = O(r), or
equivalently h(s) = O(s1/d), as in the modified Lipschitz condition (5). More generally,
assuming that µ is absolutely continuous with respect to λ, the Radon-Nikodym theorem
(Federer, 1969) asserts that µ has a density, namely, there exists a function D : Rd → R+

such that for λ-almost all x ∈ Rd,

lim
r→0

∣∣∣∣µ(Sx,r)

λ(Sx,r)
−D(x)

∣∣∣∣ = 0, (10)

such that for any measurable A ⊆ Rd,

µ(A) =

∫
A
D(x)λ(dx).

So, in this case, condition (8) with

h(s) = C∗sβ/d (11)

essentially becomes
|Pj(x)− Pj(z)| ≤ C∗D(x)β/dρ(x, z)β.
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This condition should be compared to the Hölder condition (2); see also Györfi (1981).
Similarly, for a general separable metric space, one may assume that µ is accompanied

by an increasing “small-ball probability” function ψ : R+ → R+ with limr→0 ψ(r) = 0 and
a function K : X → R+ such that for µ-almost all x ∈ X ,

µ(Sx,r) ≤ K(x)ψ(r) as r → 0. (12)

In this case, an appropriate choice would be

h(s) = C∗ψ−1(s)β s ∈ [0, 1].

Condition (8) then becomes

|Pj(x)− Pj(z)| ≤ C∗ψ−1
(
K(x)ψ(ρ(x, z))

)β
.

As an example, consider a doubling measure µ0 with supp(µ0) = X (Heinonen, 2012;
Rigot, 2018). Such a measure satisfies that there exists C = C(µ0) ≥ 1 such that for any x
and any radius r > 0,

0 < µ0(Sx,2r) ≤ Cµ0(Sx,r). (13)

Assuming that µ0 has no atoms, the doubling property (13) implies that there exists τ > 0
such that

µ0(Sx,r) = Θ(ψ(r)) = Θ(rτ ) as r → 0. (14)

Since doubling measures satisfy a differentiation theorem similar to (10), a large class of
distributions that satisfy (12) consists of all distributions µ that are absolutely continuous
with respect to µ0. Here, K in (12) is again related to µ’s density with respect to µ0. It
is worth mentioning, however, that in infinite-dimensional spaces, doubling measures may
not exist and a differentiation theorem may not hold; see Heinonen (2012); Rigot (2018).

In the field of non-parametric functional data analysis (Ferraty and Vieu, 2006; Burba
et al., 2009; Báıllo et al., 2011; Ling and Vieu, 2018), where input data items are in the form
of random functions, distributions µ accompanied by ψ in the form of (14) are said to have a
fractal dimension τ ; see Pesin (1993); Bardet (1997) for concrete examples. Similarly to (7),
a finite fractal dimension leads to rates of order n−ξ for an appropriate ξ = ξ(τ, α, β) > 0.
However, in infinite-dimensional spaces, one typically encounters distributions of exponen-
tial type, where for some C > 0 and τ, τ ′ > 0,

ψ(r) = Θ
(
e−

1
rτ

log( 1
r )
τ ′)

as r → 0. (15)

Such distributions include, for example, various diffusion and Gaussian processes; see Fer-
raty and Vieu (2006, §13) and references therein. In this case, non-parametric estimators
suffer from extremely slow convergence rates of order log(n)−ξ, even for estimating the
regression function at a fixed point x ∈ X (Ferraty and Vieu, 2006; Mas, 2012). One
may overcome such slow rates by considering a pseudo-metric over X (where the condition
ρ(x, y) = 0 ⇒ x = y is removed) instead of a metric, but coming up with an appropriate
pseudo-metric can be a challenging task (Ferraty and Vieu, 2006).

Lastly, we note that faster rates can be achieved in infinite-dimensional spaces, uniformly
over the support of µ, in terms of covering numbers, assuming the support of µ is totally
bounded (Kulkarni and Posner, 1995; Ferraty et al., 2010; Kudraszow and Vieu, 2013; Biau
et al., 2010). Here we do not make such an assumption.
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2. Universal consistency of Proto-NN

In this section we first show that a simple prototype classification rule, which we call
Proto-NN, is universally strongly consistent in any separable metric space. By the recent
results of Hanneke et al. (2021), this implies that Proto-NN is in fact universally strongly
consistent in any metric space that admits a universally consistent rule; see also Collins et al.
(2020). Our consistency result is obtained by first establishing the consistency of Proto-NN
for the more general problem of real-valued bounded L1-regression. Lastly, we show that
a slightly modified version of Proto-NN is universally strongly consistent for the general
real-valued Lp-regression problem for any 1 ≤ p <∞ under the (necessary) condition that
E{|Y |p} <∞.

To simplify Proto-NN’s analysis, we assume that in addition to the labeled sample Dn,
we also have an independent unlabeled sample X′m = {X ′1, . . . , X ′m} where the X ′i’s are
independent copies of X. Introduce the data-driven partition Pm of X such that Pm is a
Voronoi partition with the nucleus set X′m, i.e.,

Pm = {Am,1, Am,2, . . . , Am,m}

such that Am,` is the Voronoi cell around the nucleus X ′`,

Am,` =

{
x ∈ X : ` = arg min

1≤i≤m
ρ(x,X ′i)

}
,

where tie breaking is done by indices, i.e., if X ′i and X ′j are equidistant from x, then X ′i is
declared “closer” if i < j. Proto-NN estimates the regression function Pj over each cell by
the piecewise constant function

P̃n,j(x) =

∑n
i=1 I{Yi=j,Xi∈Am,`}∑n
i=1 I{Xi∈Am,`}

, if x ∈ Am,`, (16)

such that 0/0 = 0 by definition. Proto-NN is then defined by

g̃n(x) = arg max
j∈Y

P̃n,j(x). (17)

This rule is just the empirical majority vote over the labeled samples from Dn that fell into
the cell in which x resides, as determined by X′m. Proto-NN’s construction time is O(mn)
and a query takes O(m) time.

To establish Proto-NN’s universal consistency, we first establish its consistency for the
more general problem of L1 real-valued bounded regression (Györfi et al., 2006). Formally,
let the label Y be real-valued, and denote the corresponding regression function by

f(x) = E{Y | X = x}.

Introduce the partitioning regression estimate:

fn(x) =

∑n
i=1 YiI{Xi∈Am,`}∑n
i=1 I{Xi∈Am,`}

, if x ∈ Am,`. (18)
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Theorem 3 Let (X , ρ) be a separable metric space. If Y is bounded and m = mn → ∞
such that mn/n → 0, then the estimate fn is strongly consistent in L1, that is, for any
distribution ν of (X,Y ),

lim
n→∞

∫
|fn(x)− f(x)|µ(dx) = 0 a.s.

The following corollary establishes the universal consistency of Proto-NN.

Corollary 4 Let (X , ρ) be a separable metric space. If m = mn →∞ such that mn/n→ 0,
then the classification rule g̃n is universally strongly consistent, that is, for any distribution
of (X,Y ),

lim
n→∞

L(g̃n) = L∗ a.s.

The last result of this section is an extension of Theorem 3 to real-valued L1-regression
where the assumption of bounded Y is relaxed to the (necessary) condition E{|Y |} <∞. We
establish consistency for a modified rule, as similarly done in Györfi et al. (2006, Theorem
23.3). Denoting the index of the cell to which x belongs by `(x) ∈ {1, . . . ,m}, this modified
rule is given by

f tn(x) =

{
fn(x) if

∑n
i=1 I{Xi∈Am,`(x)} ≥ log n,

0 otherwise.

Theorem 5 Let (X , ρ) be a separable metric space. If m = mn →∞ and mn log n/n→ 0,
then the estimate f tn is universally strongly consistent in L1, that is, for any distribution ν
of (X,Y ) with E{|Y |} <∞,

lim
n→∞

∫
|f tn(x)− f(x)|µ(dx) = 0 a.s.

By Györfi (1991, Theorem 2), Theorem 5 implies universal strong consistency of f tn also
for Lp regression with 1 ≤ p <∞ under the (necessary) condition E{|Y |p} <∞.

It is interesting to compare Proto-NN to the recently proposed OptiNet classifier of
Hanneke et al. (2021), which, to date, was the only algorithm known to be universally con-
sistent in any separable metric space. Denoting the instances in Dn by Xn = {X1, . . . , Xn},
OptiNet first constructs several γ-nets of Xn for different candidate values of γ > 0 (a
γ-net of Xn is any maximal set X(γ) ⊆ Xn in which all interpoint distances are at least
γ). Each γ-net serves as a nucleus set for a corresponding Voronoi partition of X . For
each such partition, a prototype classifier is constructed by taking a majority-vote in each
of its cells. Then an optimal γ∗ is selected among the different candidates by minimizing
a compression-based generalization bound over γ. Alternatively, γ∗ can be chosen via a
validation procedure using a hold-out dataset. The construction time of OptiNet is O(n2)
and its query time depends on the optimal margin chosen at construction.

Hanneke et al. (2021) observed that a model selection procedure for choosing γ∗ cannot
be readily avoided, since one cannot choose a-priori a determinstic sequence γn for which
OptiNet is consistent for all distributions. This is in contrast to Proto-NN, for which any
m = mn → ∞ with mn/n → 0 will do. Of course, in practice, m should be chosen based
on the data, as done with γ∗.
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3. Rates of convergence

In this section our focus lies on the rate at which the excess error probability

E{L(gn)} − L∗ → 0.

We first derive rates for the k-NN rule under the margin condition (1) and the general-
ized Lipschitz condition (2) (Theorem 6). Obtaining convergence rates for the universally
consistent Proto-NN classifier of Section 2 under these conditions (or any other condition
mentioned in Section 1 for that matter) is currently an open research problem. Here, we
instead derive rates for a second novel prototype rule, Proto-k-NN, that hybridizes between
the Proto-NN and k-NN rules (Theorem 7). As shown below, Proto-k-NN allows a reduc-
tion in computational complexity by compressing the data into m = O(n/k) prototypes
while enjoying the same rates as the k-NN rule.

We first make an additional simplifying assumption. For a fixed x ∈ X , let

Hx(r) := P (ρ(x,X) ≤ r) , r ≥ 0, (19)

be the cumulative distribution function of ρ(x,X). In the sequel, we assume that Hx(·) is
continuous for each x. This assumption holds, for example, in the case that X = Rd and X
has a density. If Hx(·) is continuous, then in the definition of nearest neighbors, tie happens
with probability zero. In general, one can achieve that Hx(·) is continuous by adding a
randomized component to X: take X̃ = (X,U) such that X and U are independent, U is
uniformly distributed on [0, 1], and

ρ̃((x, u), (X,U)) := ρ(x,X) + δ|u− U |

for some small δ > 0. One can verify that ρ̃ is indeed a metric.

Rates for the k-NN rule. The k-nearest neighbor rule is defined as follows. We fix x ∈ X
and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing values of ρ(x,Xi). The
reordered data sequence is denoted by

(X(n,1)(x), Y(n,1)(x)), . . . , (X(n,n)(x), Y(n,n)(x)).

X(n,k)(x) is the k-th nearest neighbor of x where tie breaking is done by indices. As discussed
above, in this paper we assume that tie happens with probability zero. Choose an integer
k less than n, then the k-nearest-neighbor estimate of Pj is

Pn,j(x) =
1

k

k∑
i=1

I{Y(n,i)(x)=j},

and the k-nearest-neighbor classification rule is

gk,n(x) = arg max
j∈Y

Pn,j(x).

Concerning the properties of the k-nearest-neighbor rule and the related literature see De-
vroye et al. (1996), Györfi et al. (2006), and Biau and Devroye (2015).
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In the following theorem we bound the rate of convergence of the excess error probability
E{L(gk,n)} − L∗ for the k-nearest-neighbor classification rule. In this way we extend the
results of Kohler and Krzyzak (2007), Gadat et al. (2016), Döring et al. (2017) to the multi-
class and to the metric space case. Notice that the paper by Biau et al. (2010) contains rate
of convergence results for nearest neighbor regression estimate and Banach space valued
features, which has implications for classification, too; cf. Chaudhuri and Dasgupta (2014).

Theorem 6 Let (X , ρ) be a separable metric space. Assume that the distribution function
Hx(·) is continuous for each x. If the margin condition is satisfied with 0 < α and the
generalized Lipschitz condition is met, then for k/ log n→∞,

E{L(gk,n)} − L∗ = O(1/k(1+α)/2) +O(h(2k/n)1+α).

In the case of X = Rd and h(s) = sβ/d as in (11),

E{L(gk,n)} − L∗ = O(1/k(1+α)/2) +O((k/n)β(1+α)/d)

and the choice
kn = bn2β/(2β+d)c (20)

yields the order

n
−β(1+α)

2β+d (21)

as in (4). For the two-class problem, Audibert and Tsybakov (2007, Theorem 3.5) showed
that, under the strong density assumption and the margin condition with αβ ≤ d, (21) is
the minimax optimal rate of convergence for the class of β-Hölder-continuous Pj ’s, that is,
the order (21) is a lower bound for any classifier.

Rates for the Proto-k-NN rule. We now introduce a second prototype rule, termed
Proto-k-NN, that hybridizes between k-NN and Proto-NN. It is essentially a private case
of the aggregated denoised 1-NN algorithm introduced by Xue and Kpotufe (2018) and
corresponds to the case of using only one subsample. Xue and Kpotufe (2018) established
essentially the optimal rates in (4) for this algorithm in Rd (with finite-sample guarntees)
under the Hölder condition (2), the margin condition (3), and the strong density assumption
(see Section 1). Here we establish rates under the generalized Lipschitz condition (8) and
the margin condition (3) in an arbitrary separable metric space.

Proto-k-NN works as follows. Similarly to Proto-NN (see Section 2), an unlabeled
sample X′m serves as a nucleus set, inducing a Voronoi partition Pm of X . Instead of taking
a majority vote in each Voronoi cell, Proto-k-NN stores at each nucleus the majority vote
among the k-nearest neighbors of that nucleus. Formally, let X ′(m,1)(x) be the first nearest

neighbor of x among X′m. We fix x ∈ X , and let X(n,k)(X
′
(m,1)(x)) be the k-th nearest

neighbor of X ′(m,1)(x) from the set Xn and Y(n,k)(X
′
(m,1)(x)) stands for its label. The tie

breaking is done by randomization. Again, in this section we assume that tie happens with
probability 0. Choose an integer k less than n, then Proto-k-NN estimates Pj(x) by the
piecewise constant function

P̂n,j(x) = P̂n,j(X
′
(m,1)(x)) =

1

k

k∑
i=1

I{Y(n,i)(X′(m,1)(x))=j},

10
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and the corresponding prototype nearest-neighbor classification rule is

ĝn(x) = arg max
j∈Y

P̂n,j(x).

The construction and query times of Proto-k-NN are O(mn) and O(m) respectively; the
same as for Proto-NN.

Theorem 7 Let (X , ρ) be a separable metric space. Assume that the distribution function
Hx(·) is continuous for each x. If the margin condition is satisfied with 0 < α and the
generalized Lipschitz condition is met with h that is concave, then for k/ log n→∞,

E{L(ĝn)} − L∗ = O(1/k(1+α)/2) +O(h(k/n)1+α) +O(h(1/m)1+α).

According to this theorem, the proper choice of m is proportional to n/k. For k as in
(20), we obtain the same optimal rates as in (21). Note however that, similarly to the k-NN
rule, Proto-k-NN is not universally consistent in all separable metric spaces, as established
by the same counterexample in Cérou and Guyader (2006, Section 3).

Lastly, we note that in some cases, the distribution µ is concentrated on a finite-
dimensional subspace of X such that on this space the modified Lipschitz condition is
satisfied. Then Proto-NN and Proto-k-NN, not knowing this subspace and the intrinsic di-
mension, automatically achieve good rate of convergence; see Kpotufe and Dasgupta (2012)
and references therein for other algorithms that are adaptive to the intrinsic dimension.

4. Proof of universal consistency

Proof of Theorem 3. Put

f̄m(x) =

∫
Am,`

f(z)µ(dz)

µ(Am,`)
, if x ∈ Am,`.

Then, ∫
|fn(x)− f̄m(x)|µ(dx) and

∫
|f̄m(x)− f(x)|µ(dx)

are called estimation errror and approximation error, respectively. Introduce the notations

ϑn(A) =
1

n

n∑
i=1

YiI{Xi∈A}, ϑ(A) = E{ϑn(A)}

and

µn(A) =
1

n

n∑
i=1

I{Xi∈A}, µ(A) = E{µn(A)}.

Concerning the estimation error,∫
|fn(x)− f̄m(x)|µ(dx) =

∑
V ∈Pm

∫
V
|fn(x)− f̄m(x)|µ(dx)

=
∑
V ∈Pm

∣∣∣∣ϑn(V )

µn(V )
− ϑ(V )

µ(V )

∣∣∣∣µ(V ).

11
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If L stands for a bound on |Y |, then |ϑn(V )| ≤ Lµn(V ) and∫
|fn(x)− f̄m(x)|µ(dx)

≤
∑
V ∈Pm

∣∣∣∣ϑn(V )

µn(V )
− ϑn(V )

µ(V )

∣∣∣∣µ(V ) +
∑
V ∈Pm

∣∣∣∣ϑn(V )

µ(V )
− ϑ(V )

µ(V )

∣∣∣∣µ(V )

≤ L
∑
V ∈Pm

|µ(V )− µn(V )|+
∑
V ∈Pm

|ϑn(V )− ϑ(V )| .

The first term of the right hand side is a special case of the second one, therefore we bound
only the tail distribution of the second term. Let σ(Pm) be the σ-algebra generated by Pm.
As in Biau and Györfi (2005), the equality |a− b| = 2(a− b)+ + (b− a) implies∑

V ∈Pm

|ϑn(V )− ϑ(V )| = 2 max
V ∈σ(Pm)

(ϑn(V )− ϑ(V ))+ +
∑
V ∈Pm

(ϑ(V )− ϑn(V ))

= 2 max
V ∈σ(Pm)

(ϑn(V )− ϑ(V ))+ + E{Y } − 1

n

n∑
i=1

Yi.

Thus, for any ε > 0, the Hoeffding inequality implies

P

{ ∑
V ∈Pm

|ϑn(V )− ϑ(V )| ≥ ε | X′m

}

≤ P
{

2 max
V ∈σ(Pm)

(ϑn(V )− ϑ(V )) ≥ 2ε/3 | X′m
}

+ P

{
E{Y } − 1

n

n∑
i=1

Yi ≥ ε/3

}
≤ (2m + 1)e−nε

2/(18L2).

Therefore, mn/n→ 0 together with the Borel-Cantelli lemma implies that∑
V ∈Pm

|ϑn(V )− ϑ(V )| → 0 a.s.

and the consistency of the estimation error is proved.

Concerning the approximation error, refer to Lemma A.1 in Hanneke et al. (2021) such
that choose a Lipschitz function f∗ with a Lipschitz constant C and with a support contained
in a sphere S such that ∫

|f(x)− f∗(x)|µ(dx) ≤ ε.

By examining the proof of Lemma A.1 in Hanneke et al. (2021), we may choose f∗ to be
bounded by the same bound assumed on |Y |. Put

f̄∗m(x) =

∫
Am,`

f∗(z)µ(dz)

µ(Am,`)
, if x ∈ Am,`.

12
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Then, ∫
|f̄m(x)− f(x)|µ(dx)

≤
∫
|f̄m(x)− f̄∗m(x)|µ(dx) +

∫
|f̄∗m(x)− f∗(x)|µ(dx) +

∫
|f∗(x)− f(x)|µ(dx)

≤
∫
|f̄∗m(x)− f∗(x)|µ(dx) + 2

∫
|f∗(x)− f(x)|µ(dx)

≤
∫
|f̄∗m(x)− f∗(x)|µ(dx) + 2ε.

The bound |Y | ≤ L implies that |f∗(x)| ≤ L, therefore∫
|f̄∗m(x)− f∗(x)|µ(dx)

=
∑
V ∈Pm

∫
V
|f̄∗m(x)− f∗(x)|µ(dx)

=
∑
V ∈Pm

1

µ(V )

∫
V

∣∣∣∣∫
V
f∗(z)µ(dz)− f∗(x)µ(V )

∣∣∣∣µ(dx)

≤
∑
V ∈Pm

1

µ(V )

∫
V

∫
V
|f∗(z)− f∗(x)|µ(dx)µ(dz)

≤
∑
V ∈Pm

1

µ(V )

∫
V

∫
V

min{Cρ(x, z), 2L}µ(dx)µ(dz).

Recall that X ′(m,1)(x) denotes the first nearest neighbor of x among X′m. For x, z ∈ V ,

ρ(x, z) ≤ ρ(x,X ′(m,1)(x)) + ρ(X ′(m,1)(x), z) = ρ(x,X ′(m,1)(x)) + ρ(z,X ′(m,1)(z)),

where we applied that V is a Voronoi cell and so for any x, z ∈ V , the nucleuses X ′(m,1)(x)

and X ′(m,1)(z) are identical. Thus,∫
|f̄∗m(x)− f∗(x)|µ(dx) ≤

∫
min{2Cρ(x,X ′(m,1)(x)), 2L}µ(dx).

Cover and Hart (1967) proved that, for a separable metric space,

ρ(x,X ′(m,1)(x))→ 0

a.s. as m → ∞, for µ-almost all x, cf. Lemma 6.1 in Györfi et al. (2006). Therefore, the
dominated convergence yields∫

|f̄∗m(x)− f∗(x)|µ(dx)→ 0 a.s.,

concluding the proof of Theorem 3.

13
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Proof of Corollary 4. An extension of Devroye et al. (1996, Theorem 2.2) yields

L(g̃n)− L∗ ≤
M∑
j=1

∫
|Pj(x)− P̃n,j(x)|µ(dx).

Thus, the corollary is proved if∫
|Pj(x)− P̃n,j(x)|µ(dx)→ 0

a.s., j = 1, . . . ,M , which follows from Theorem 3.

Proof of Theorem 5 We write the regression estimator f tn as

f tn(x) =

n∑
i=1

Wn,i(x)Yi

where

Wn,i(x) =
I{Xi∈Am,`(x)}∑n
i=1 I{Xi∈Am,`(x)}

· I{∑n
i=1 I{Xi∈Am,`(x)}≥logn}.

Note that the weights are sub-probabilities, namely, for all x ∈ X ,

0 ≤
n∑
i=1

Wn,i(x) ≤ 1.

By Györfi (1991, Theorem 2) (see also Györfi et al. (2006, Lemma 23.3)), it suffices to show:

(i) f tn is strongly consistent for L1 assuming Y is bounded, |Y | ≤ L;

(ii) there exists c > 0 such that for any Y with E{|Y |} <∞,

lim sup
n

n∑
i=1

∫
Wn,i(x)µ(dx)|Yi| ≤ cE{|Y |} a.s. (22)

To show (i), assume |Y | ≤ L and decompose∫
|f tn(x)− f(x)|µ(dx) ≤

∫
|f tn(x)− fn(x)|µ(dx) +

∫
|fn(x)− f(x)|µ(dx),

where fn is as in (18). By Theorem 3,

lim
n→∞

∫
|fn(x)− f(x)|µ(dx) = 0 a.s.

Recall the notation µn(A) = 1
n

∑n
i=1 I{Xi∈A} for A ⊆ X and let

Gn = {` : µn(Am,`) ≥ log n/n} and Gn =
⋃
`∈Gn

Am,`.

14
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Since f tn(x) = fn(x) for x ∈ Gn and f tn(x) = 0 for x ∈ Gcn,∫
|f tn(x)− fn(x)|µ(dx) =

∫
Gcn
|f tn(x)− fn(x)|µ(dx) =

∫
Gcn
|fn(x)|µ(dx) ≤ Lµ(Gcn).

For c = e2 let

Fn = {` : µ(Am,`) ≥ c log n/n} and Fn =
⋃
`∈Fn

Am,`.

Then

µ(Gcn) = µ(Gcn ∩ Fcn) + µ(Gcn ∩ Fn) ≤ µ(Fcn) + µ(Gcn ∩ Fn) ≤ cmn log n

n
+ µ(Gcn ∩ Fn).

The first term convergences to 0 by the Theorem’s condition on mn. For the second term,

µ(Gcn ∩ Fn) =
∑
`∈Fn

µ(Am,`)I{µn(Am,`)<logn/n} ≤
∑
`∈Fn

µ(Am,`)I{µn(Am,`)<µ(Am,`)/c}.

Chernoff’s bound implies that for any ` ∈ Fn,

P
{
µn(Am,`) < µ(Am,`)/c | X′m

}
≤ e−nµ(Am,`)(1− 1

c
− log c

c
) ≤ e−c(1−

1
c
− log c

c
) logn ≤ n−e2+3.

Thus, for any 0 < ε < 1,

P

∑
`∈Fn

µ(Am,`)I{µn(Am,`)<µ(Am,`)/c} > ε


= E

P

∑
`∈Fn

µ(Am,`)I{µn(Am,`)<µ(Am,`)/c} > ε | X′m




≤ E

P

∑
`∈Fn

µ(Am,`)I{µn(Am,`)<µ(Am,`)/c} > ε
∑
`∈Fn

µ(Am,`) | X′m




≤ E

∑
`∈Fn

P
{
I{µn(Am,`)<µ(Am,`)/c} > ε | X′m

}
= E

∑
`∈Fn

P
{
µn(Am,`) < µ(Am,`)/c | X′m

}
≤ mn · n−e

2+3 ≤ n−e2+4,

which is summable. Hence, by the Borel-Cantelli Lemma,

lim sup
n

∫
|f tn(x)− fn(x)|µ(dx) = 0 a.s.,

concluding the proof of (i).
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To show (ii), assume Y satisfies E{|Y |} <∞. We bound

lim sup
n

n∑
i=1

∫
Wn,i(x) |Yi|µ(dx) ≤ lim sup

n

(
1

n

n∑
i=1

|Yi|

)
·max

i

∫
nWn,i(x)µ(dx).

By the strong law of large numbers,

1

n

n∑
i=1

|Yi| → E{|Y |} a.s.

Hence, it suffices to show that for c = e2, with probability one,

lim sup
n

max
i

∫
nWn,i(x)µ(dx) ≤ c. (23)

If Gn = ∅, then Wn,i(x) = 0 for all x ∈ X . Thus,

max
i

∫
nWn,i(x)µ(dx) = 0.

If Gn 6= ∅, then since Wn,i(x) = 0 for all x ∈ Gcn,

max
i

∫
nWn,i(x)µ(dx) = max

i:`(Xi)∈Gn

µ(Am,`(Xi))

µn(Am,`(Xi))
.

Then,

P
{

max
i

∫
nWn,i(x)µ(dx) > c

}
= P

{
Gn 6= ∅, max

i:`(Xi)∈Gn

µ(Am,`(Xi))

µn(Am,`(Xi))
> c

}
≤ n · P

{
`(X1) ∈ Gn,

µ(Am,`(X1))

µn(Am,`(X1))
> c

}
= n · P

{
`(X1) ∈ Gn ∩ Fn,

µ(Am,`(X1))

µn(Am,`(X1))
> c

}

≤ n · E

∑
`∈Fn

P
{
X1 ∈ Am,`,

µ(Am,`)

µn(Am,`)
> c | X′m

}
= n · E

∑
`∈Fn

P

{
X1 ∈ Am,`,

nµ(Am,`)

1 +
∑n

i=2 I{Xi∈Am,`}
> c | X′m

}
= n · E

∑
`∈Fn

µ(Am,`) · P

{
nµ(Am,`)

1 +
∑n

i=2 I{Xi∈Am,`}
> c | X′m

}
≤ n · E

∑
`∈Fn

µ(Am,`) · P
{
µ(Am,`)

µn(Am,`)
> c | X′m

} .
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Chernoff’s bound implies that for any ` ∈ Fn,

P
{
µ(Am,`)

µn(Am,`)
> c | X′m

}
≤ e−nµ(Am,`)(1− 1

c
− log c

c
) ≤ e−(c−1−log c) logn ≤ n−e2+3.

Thus,

P
{

max
i

∫
nWn,i(x)µ(dx) > c

}
≤ n−e2+4 · E

∑
`∈Fn

µ(Am,`)

 ≤ n−e2+4,

which is again summable. Hence, by the Borel-Cantelli Lemma, (23) holds with probability
one, concluding the proof of (ii) and Theorem 5.

5. Proofs of convergence rates

The rates of convergence for the k-NN and Proto-k-NN classifiers of Section 3 are derived
using the following decomposition of the excess error probability.

Lemma 8 Let gn be a plug-in rule with estimates Pn,j of Pj as in Section 1. Abbreviating

R∗l (x) = Pg∗(x)(x)− Pl(x) ≥ 0, l ∈ Y,

we have

E{L(gn)} − L∗ ≤
M∑
j=1

M∑
l=1

Jn,j,l

where

Jn,j,l =

∫
R∗l (x)I{l 6=g∗(x)}P{|Pn,j(x)− Pj(x)| ≥ R∗l (x)/M}µ(dx), j, l ∈ Y. (24)

Below, we bound Jn,j,l for each algorithm separately.

Proof of Lemma 8. For any decision function g,

P{g(X) 6= Y | X} = 1− P{g(X) = Y | X}

= 1−
M∑
j=1

P{g(X) = Y = j | X}

= 1−
M∑
j=1

I{g(X)=j}Pj(X)

= 1− Pg(X)(X),

17
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which implies

E{L(gn)} − L∗ = E{Pg∗(X)(X)− Pgn(X)(X)}

=

∫
E{(Pg∗(x)(x)− Pgn(x)(x))I{g∗(x)6=gn(x)}}µ(dx)

=

∫
E{In(x)}µ(dx),

where

In(x) = (Pg∗(x)(x)− Pgn(x)(x))I{Pg∗(x)(x)>Pgn(x)(x)}I{Pn,gn(x)(x)≥Pn,g∗(x)(x)}.

The relation

{Pn,gn(x)(x)− Pn,g∗(x)(x) ≥ 0}
= {Pn,gn(x)(x)− Pgn(x)(x) + Pgn(x)(x)− Pg∗(x)(x) + Pg∗(x)(x)− Pn,g∗(x)(x) ≥ 0}

⊆


M∑
j=1

|Pn,j(x)− Pj(x)| ≥ Pg∗(x)(x)− Pgn(x)(x)


yields

I{Pg∗(x)(x)>Pgn(x)(x)}I{Pn,gn(x)(x)≥Pn,g∗(x)(x)} ≤ I{∑M
j=1 |Pn,j(x)−Pj(x)|≥Pg∗(x)(x)−Pgn(x)(x)>0}.

Thus,

In(x) ≤
M∑
l=1

(Pg∗(x)(x)− Pl(x))I{∑M
j=1 |Pn,j(x)−Pj(x)|≥Pg∗(x)(x)−Pl(x)}I{gn(x)=l 6=g∗(x)}

≤
M∑
l=1

(Pg∗(x)(x)− Pl(x))I{∑M
j=1 |Pn,j(x)−Pj(x)|≥Pg∗(x)(x)−Pl(x)}I{l 6=g∗(x)}

≤
M∑
j=1

M∑
l=1

(Pg∗(x)(x)− Pl(x))I{l 6=g∗(x)}I{|Pn,j(x)−Pj(x)|≥(Pg∗(x)(x)−Pl(x))/M}

=

M∑
j=1

M∑
l=1

R∗l (x)I{l 6=g∗(x)}I{|Pn,j(x)−Pj(x)|≥R∗l (x)/M}.

Taking expectation and integrating with respect to µ concludes the proof of Lemma 8.

Proof of Theorem 6. Lemma 8 shows that to bound E{L(gk,n)} − L∗, it suffices to
bound Jn,j,l in (24). To this end, let

P̄n,j(x) =
1

k

k∑
i=1

E{I{Y(n,i)(x)=j} | X1, . . . , Xn} =
1

k

k∑
i=1

Pj(X(n,i)(x)).

We bound (24) by

Jn,j,l ≤ J
(1)
n,j,l + J

(2)
n,j,l,

18
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where

J
(1)
n,j,l =

∫
R∗l (x)I{l 6=g∗(x)}P{|Pn,j(x)− P̄n,j(x)| ≥ R∗l (x)/(2M)}µ(dx)

and

J
(2)
n,j,l =

∫
R∗l (x)I{l 6=g∗(x)}P{|P̄n,j(x)− Pj(x)| ≥ R∗l (x)/(2M)}µ(dx).

For each j and l, we show that

J
(1)
n,j,l = O(1/k(1+α)/2)

and

J
(2)
n,j,l = O(h(2k/n)1+α),

from which the theorem follows.
The estimation error J

(1)
n,j,l can be managed in the same way as in the proof of Lemma

1 in Döring et al. (2017). The Hoeffding inequality implies that

P{|Pn,j(x)− P̄n,j(x)| ≥ R∗l (x)/(2M) | X1, . . . , Xn} ≤ 2e−kR
∗
l (x)2/(2M2).

Therefore,

J
(1)
n,j,l ≤ 2E

{
R∗l (X)I{l 6=g∗(X)}e

−kR∗l (X)2/(2M2)
}
.

The margin condition with parameter α means that for 0 ≤ t ≤ 1,

G(t) := P{R∗l (X)I{l 6=g∗(X)} ≤ t} ≤ P{P(1)(X)− P(2)(X) ≤ t} ≤ c∗tα.

This implies that

J
(1)
n,j,l ≤ 2

∫ 1

0
se−ks

2/(2M2)G(ds)

≤ 2c∗α

∫ 1

0
se−ks

2/(2M2)sα−1ds

≤ 2c∗α · k−(α+1)/2 ·
∫ ∞

0
e−u

2/(2M2)uαdu

= O(k−(α+1)/2). (25)

Concerning the approximation error J
(2)
n,j,l, we follow the line of proof of Lemma 2 in

Döring et al. (2017). The generalized Lipschitz condition implies that

|P̄n,j(x)− Pj(x)| ≤ 1

k

k∑
i=1

|Pj(X(n,i)(x))− Pj(x)|

≤ 1

k

k∑
i=1

h(µ(Sx,ρ(x,X(n,i)(x))))

≤ h(µ(Sx,ρ(x,X(n,k)(x)))).
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If the distribution function Hx(·) is continuous for each x, then we apply the probability
integral transform (cf. Biau and Devroye (2015), p. 8). As a result, the random variable

Hx(ρ(x,X)) = µ{Sx,ρ(x,X)} (26)

is uniformly distributed on [0, 1]. For i.i.d. uniformly distributed U1, . . . , Un, denote by
U(1,n), . . . , U(n,n) the corresponding order statistics. Then (26) implies

µ(Sx,ρ(x,X(n,k)(x)))
D
= U(k,n).

Thus, from the generalized Lipschitz condition one gets

P{R∗l (x)/(2M) ≤ |P̄n,j(x)− Pj(x)|} ≤ P
{
R∗l (x)/(2M) ≤ h(µ(Sx,ρ(x,X(n,k)(x))))

}
= P

{
R∗l (x)/(2M) ≤ h(U(k,n))

}
= P

{
h−1(R∗l (x)/(2M)) ≤ U(k,n)

}
. (27)

As in the proof of Lemma 3 of Döring et al. (2017), Chernoff’s exponential inequality implies

P{R∗l (x)/(2M) ≤ |P̄n,j(x)− Pj(x)|}

≤ P

{
n∑
i=1

I{Ui≤h−1(R∗l (x)/(2M))} < k

}
≤ e−(1−log 2)k + I{h−1(R∗l (x)/(2M))<2k/n}. (28)

Applying the margin condition, we get

J
(2)
n,j,l ≤ E

{
R∗l (X)I{l 6=g∗(X)}(e

−(1−log 2)k + I{h−1(R∗l (X)/(2M))<2k/n})
}

≤ e−(1−log 2)k +

∫ 1

0
sI{h−1(s/(2M))<2k/n}G(ds)

≤ e−(1−log 2)k + c∗α

∫ 1

0
sαI{s<2Mh(2k/n)}ds

≤ e−(1−log 2)k +O(h(2k/n)1+α),

concluding the proof of Theorem 6.

Proof of Theorem 7. As in the proof of Theorem 6, we bound (24) by

Jn,j,l ≤ J
(1)
n,j,l + J

(2)
n,j,l,

where

J
(1)
n,j,l =

∫
R∗l (x)I{l 6=g∗(x)}P{|Pn,j(X ′(m,1)(x))− P̄n,j(X ′(m,1)(x))| > R∗l (x)/(2M)}µ(dx)

and

J
(2)
n,j,` =

∫
R∗l (x)I{l 6=g∗(x)}P{|P̄n,j(X ′(m,1)(x))− Pj(x)| > R∗l (x)/(2M)}µ(dx).
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For each j and l, we show that

J
(1)
n,j,l = O(1/k(1+α)/2)

and

J
(2)
n,j,l = O(h(k/n)α+1) +O(h(1/m)α+1),

from which the theorem follows. The Hoeffding inequality implies that

P{|Pn,j(X ′(m,1)(x))− P̄n,j(X ′(m,1)(x))| ≥ R∗l (x)/(2M) | Xn, X
′
(m,1)(x)} ≤ 2e−kR

∗
l (x)2/(2M2).

Therefore, similarly to (25), the margin condition implies that

J
(1)
n,j,l ≤ 2E

{
R∗l (X)I{l 6=g∗(X)}e

−kR∗l (X)2/(2M2)
}

= O(k−(α+1)/2).

The generalized Lipschitz condition implies that

|P̄n,j(X ′(m,1)(x))− Pj(x)|

≤ 1

k

k∑
i=1

|Pj(X(n,i)(X
′
(m,1)(x)))− Pj(X ′(m,1)(x))|+ |Pj(X ′(m,1)(x))− Pj(x)|

≤ 1

k

k∑
i=1

h(µ(SX′
(m,1)

(x),ρ(X′
(m,1)

(x),X(n,i)(X
′
(m,1)

(x))))) + h(µ(Sx,ρ(x,X′
(m,1)

(x))))

≤ h(µ(SX′
(m,1)

(x),ρ(X′
(m,1)

(x),X(n,k)(X
′
(m,1)

(x))))) + h(µ(Sx,ρ(x,X′
(m,1)

(x)))).

Thus,

P{R∗l (x)/(2M) ≤ |P̄n,j(X ′(m,1)(x))− Pj(x)|}

≤ P
{
R∗l (x)/(4M) ≤ h(µ(SX′

(m,1)
(x),ρ(X′

(m,1)
(x),X(n,k)(X

′
(m,1)

(x)))))
}

+ P
{
R∗l (x)/(4M) ≤ h(µ(Sx,ρ(x,X′

(m,1)
(x))))

}
.

Similarly to (27) and (28) in the proof of Theorem 6, Chernoff’s inequality implies

P
{
R∗l (x)/(4M) ≤ h(µ(SX′

(m,1)
(x),ρ(X′

(m,1)
(x),X(n,k)(X

′
(m,1)

(x)))))
}

= P
{
R∗l (x)/(4M) ≤ h(U(k,n))

}
= P

{
h−1(R∗l (x)/(4M)) ≤ U(k,n)

}
≤ P

{
n∑
i=1

I{Ui≤h−1(R∗l (x)/(4M))} < k

}
≤ e−(1−log 2)k + I{h−1(R∗l (x)/(4M))<2k/n}.
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Applying the margin condition, we get

E
{
R∗l (X)I{l 6=g∗(X)}P{R∗l (X)/(4M) ≤ h(µ(SX′

(m,1)
(X),ρ(X′

(m,1)
(X),X(n,k)(X

′
(m,1)

(X))))) | X}
}

≤ E
{
R∗l (X)I{l 6=g∗(X)}(e

−(1−log 2)k + I{h−1(R∗l (X)/(4M))<2k/n})
}

≤ e−(1−log 2)k +

∫ 1

0
sI{h−1(s/(4M))<2k/n}G(ds)

≤ e−(1−log 2)k + c∗α

∫ 1

0
sαI{s<4Mh(2k/n)}ds

≤ e−(1−log 2)k +O(h(2k/n)α+1)

= e−(1−log 2)k +O(h(k/n)α+1),

where in the last equality we applied the assumption that h is concave. A slight modification
of the previous argument yields

P
{
R∗l (x)/(4M) < h(µ(Sx,ρ(x,X′

(m,1)
(x))))

}
= P

{
R∗l (x)/(4M) < h(U(1,m))

}
,

and so

E
{
R∗l (X)I{l 6=g∗(X)}P{R∗l (X)/(4M) < h(µ(SX,ρ(X,X′

(m,1)
(X)))) | X}

}
= E

{
R∗l (X)I{l 6=g∗(X)}P

{
R∗l (X)/(4M) < h(U(1,m)) | X

}}
≤ E

{∫ 1

0
sI{s<4Mh(U(1,m))}G(ds)

}
≤ c∗αE

{∫ 1

0
sαI{s<4Mh(U(1,m))}ds

}
= O(E

{
h(U(1,m))

α+1
}

)

= O(h(1/m)α+1),

where in the last equality we again applied the assumption that h is concave.
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László Györfi. The rate of convergence of kn-nn regression estimates and classification rules
(corresp.). IEEE Transactions on Information Theory, 27(3):362–364, 1981.
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André Mas. Lower bound in regression for functional data by representation of small ball
probabilities. Electronic Journal of Statistics, 6:1745–1778, 2012.

Yakov Pesin. On rigorous mathematical definitions of correlation dimension and generalized
spectrum for dimensions. Journal of statistical physics, 71(3-4):529–547, 1993.

David Preiss. Invalid Vitali theorems. Abstracta. 7th Winter School on Abstract Analysis,
pages 58–60, 1979.

David Preiss. Gaussian measures and the density theorem. Comment. Math. Univ. Carolin.,
22(1):181–193, 1981.

Nikita Puchkin and Vladimir Spokoiny. An adaptive multiclass nearest neighbor classifier.
ESAIM: Probability and Statistics, 24:69–99, 2020.

Severine Rigot. Differentiation of measures in metric spaces. arXiv:1802.02069, 2018.

Richard J. Samworth. Optimal weighted nearest neighbour classifiers. Ann. Statist., 40(5):
2733–2763, 10 2012.

Charles J. Stone. Consistent nonparametric regression. The Annals of Statistics, 5(4):
595–620, 1977.
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