With all the attention on LLMs (Large Language Models) and image generators lately, it’s nice to see some of the more niche and unusual applications of machine learning. GARF (Generalizeable 3D reAssembly for Real-world Fractures) is one such project.
GARF may play fast and loose with acronym formation, but it certainly knows how to be picky when it counts. Its whole job is to look at the pieces of a broken object and accurately figure out how to fit the pieces back together, even if there are some missing bits or the edges aren’t clean.

Efficiently and accurately figuring out how to re-assemble different pieces into a whole is not a trivial task. One may think it can in theory be brute-forced, but the complexity of such a job rapidly becomes immense. That’s where machine learning methods come in, as researchers created a system that can do exactly that. It addresses the challenge of generalizing from a synthetic data set (in which computer-generated objects are broken and analyzed for training) and successfully applying it to the kinds of highly complex breakage patterns that are seen in real-world objects like bones, recovered archaeological artifacts, and more.
The system is essentially a highly adept 3D puzzle solver, but an entirely different beast from something like this jigsaw puzzle solving pick-and-place robot. Instead of working on flat pieces with clean, predictable edges it handles 3D scanned fragments with complex break patterns even if the edges are imperfect, or there are missing pieces.
GARF is exactly the kind of software framework that is worth keeping in the back of one’s mind just in case it comes in handy some day. The GitHub repository contains the code (although at this moment the custom dataset is not yet uploaded) but there is also a demo available for the curious.