-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgraph_model.py
214 lines (195 loc) · 9.14 KB
/
graph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
from copy import deepcopy
import numpy as np
import pandas as pd
from datetime import datetime
from argparse import Namespace
from collections import defaultdict
from typing import Any, Dict, List, Optional, Union, Callable
import torch
from torch.nn import MSELoss
from torch_geometric.utils import degree
import pytorch_lightning as pl
from utils import (
cal_auc_score,
cal_aupr_score,
cal_accuracy,
cal_cls_report,
)
from models.graph_base import (
Data,
GCNGraphEmbedding,
SAGEGraphEmbedding,
GINGraphEmbedding,
GATGraphEmbedding,
TransformerGraphEmbedding,
)
class GraphConv(pl.LightningModule):
def __init__(self, hparams: Namespace):
super().__init__()
self.args = hparams
self.in_channels = self._get_hparam(hparams, 'feature_dim')
# Logging
self.start = datetime.now()
# Logistics
self.n_gpus = self._get_hparam(hparams, 'n_gpus', 1)
self.checkpoint_dir = self._get_hparam(hparams, 'checkpoint_dir', '.')
self.n_workers = self._get_hparam(hparams, 'n_workers', 1)
# Training args
self.lr = self._get_hparam(hparams, 'lr', 1e-3)
self.weight_decay = self._get_hparam(hparams, 'weight_decay', 1e-5)
# Model args
model_kwargs = self._get_hparam(hparams, 'model_kwargs', dict())
self.out_channels = model_kwargs.get('output_dim', 128)
self.layers = model_kwargs.get('layers', 3)
self.dropout = model_kwargs.get('dropout', 0.1)
self.model_type = model_kwargs.get('model_type', 'gcn')
# Models
if self.model_type.lower() == 'gcn':
self.model = GCNGraphEmbedding(self.dropout, self.in_channels, self.out_channels, self.layers)
elif self.model_type.lower() == 'sage':
self.model = SAGEGraphEmbedding(self.dropout, self.in_channels, self.out_channels, self.layers)
elif self.model_type.lower() == 'gin':
self.model = GINGraphEmbedding(self.dropout, self.in_channels, self.out_channels, self.layers)
elif self.model_type.lower() == 'gat':
self.model = GATGraphEmbedding(self.dropout, self.in_channels, self.out_channels, self.layers)
else:
self.model = TransformerGraphEmbedding(self.dropout, self.in_channels, self.out_channels, self.layers)
# Loss
self.mse_loss = MSELoss(reduction='none')
# Logging
print('Created {} module \n{} \nwith {:,} GPUs {:,} workers'.format(
self.model.__class__.__name__, self.model, self.n_gpus, self.n_workers))
# Save hyperparameters
self.global_outputs = defaultdict(np.array)
self.global_labels = defaultdict(np.array)
self.train_dists = []
self.train_avg = torch.normal(mean=0, std=1, size=(2*self.out_channels,)) # F
self.save_hyperparameters()
@property
def on_cuda(self):
return next(self.parameters()).is_cuda
@classmethod
def _get_hparam(cls, namespace: Namespace, key: str, default: bool = None):
if hasattr(namespace, key):
return getattr(namespace, key)
print('Using default argument for "{}"'.format(key))
return default
def forward(self, *args, **kwargs):
return self.model(*args, **kwargs)
def configure_optimizers(self):
optimizer = torch.optim.Adam(
self.parameters(),
lr=self.lr,
weight_decay=self.weight_decay, # l2 regularization
)
return optimizer
def training_step(self, G: Data, batch_idx: int, split: str = 'train'):
preds = self.forward(
x=G.x,
edge_index=G.edge_index,
batch=G.batch,
)
# Handling average feature vector
targets = self.train_avg.expand(preds.shape[0], -1) # B X F
if self.on_cuda:
targets = targets.cuda()
# Calculate loss and save to dict
individual_loss = self.mse_loss(preds, targets).sum(dim=-1) # B
avg_loss = individual_loss.mean() # float
if split == 'test':
loss = individual_loss # B
else:
loss = avg_loss # float
if split == 'train':
# Update train L2 distances
self.train_dists.extend(individual_loss.detach().tolist())
logging_dict = {'train_loss': avg_loss.detach().item()}
return {
'loss': loss,
'preds': preds, # For calculating averaged feature vector
'labels': G.y,
'log': logging_dict, # Tensorboard logging for training
'progress_bar': logging_dict, # Progress bar logging for TQDM
}
def training_epoch_end(self, train_step_outputs: List[dict], split: str = 'train'):
preds = [instance['preds'].detach().cpu() for instance in train_step_outputs]
if split == 'train':
# Update average train feature vector
self.train_avg = torch.cat(preds, dim=0).mean(dim=0)
# Update train dists and thresholds
sorted_train_dists = sorted(self.train_dists)
self.thre_max = max(self.train_dists)
self.thre_mean = np.mean(self.train_dists)
self.thre_top80 = sorted_train_dists[int(0.8*len(self.train_dists))]
self.train_dists = []
print("Epoch {} train avg (sum) {}, max thre {:.4f}, 80% thre {:.4f}, mean thre {:.4f}".format(
self.current_epoch, self.train_avg.sum(), self.thre_max, self.thre_top80, self.thre_mean,
))
preds = torch.cat(preds, dim=0).numpy() # N X F
labels = [instance['labels'].detach().cpu() for instance in train_step_outputs]
labels = torch.cat(labels, dim=0).numpy() # N
self.global_outputs[split] = preds
self.global_labels[split] = labels
if split == 'val':
avg_loss = torch.stack([instance['loss'].detach().cpu() for instance in train_step_outputs]).mean()
print('Epoch {} avg val_loss: {}'.format(self.current_epoch, avg_loss.detach().item()))
elif split == 'test':
print("Test ({} samples) using train avg (sum) {}, max thre {:.4f}, 80% thre {:.4f}, mean thre {:.4f}".format(
len(labels), self.train_avg.sum(), self.thre_max, self.thre_top80, self.thre_mean,
))
loss = [instance['loss'].detach().cpu() for instance in train_step_outputs]
loss = torch.cat(loss, dim=0).numpy() # N
# Calculating AUC
auc_score = cal_auc_score(labels, loss)
aupr_score = cal_aupr_score(labels, loss)
# Threshold
thre_dict = {
'top80%': self.thre_top80,
'mean': self.thre_mean,
# 'max': self.thre_max,
}
pred_dict = defaultdict(np.array)
for name, threshold in thre_dict.items():
acc_score = cal_accuracy(labels, loss, threshold)
pred_array, cls_report = cal_cls_report(labels, loss, threshold, output_dict=True)
pred_results = {'AUC': [auc_score], 'AUPR': [aupr_score], 'ACC({})'.format(name): [acc_score]}
stat_df = pd.DataFrame(pred_results)
cls_df = pd.DataFrame(cls_report).transpose()
pred_dict[name] = pred_array
print(stat_df)
print(cls_df)
# Save predicting results (regarding each threshold)
stat_df.to_csv(os.path.join(self.checkpoint_dir, f'predict-results-{name}.csv'))
cls_df.to_csv(os.path.join(self.checkpoint_dir, f'predict-cls-report-{name}.csv'))
pred_dict['GT'] = labels
pred_df = pd.DataFrame(pred_dict)
pred_df.to_csv(os.path.join(self.checkpoint_dir, f'predictions.csv'))
def validation_step(self, G: Data, batch_idx: int, *args, **kwargs):
loss_dict = self.training_step(G, batch_idx, split='val')
log_dict = loss_dict['log']
log_dict['val_loss'] = log_dict.pop('train_loss')
self.log("val_loss", log_dict['val_loss'], batch_size=loss_dict['preds'].size(0))
return {
'loss': loss_dict['loss'],
'preds': loss_dict['preds'],
'labels': loss_dict['labels'],
'log': log_dict, # Tensorboard logging
'progress_bar': log_dict, # Progress bar logging for TQDM
}
def validation_epoch_end(self, validation_step_outputs: List[dict]):
self.training_epoch_end(validation_step_outputs, 'val')
def test_step(self, G: Data, batch_idx: int):
loss_dict = self.training_step(G, batch_idx, split='test')
log_dict = loss_dict['log']
log_dict['test_loss'] = log_dict.pop('train_loss')
self.log("test_loss", log_dict['test_loss'], batch_size=loss_dict['preds'].size(0))
return {
'loss': loss_dict['loss'],
'preds': loss_dict['preds'],
'labels': loss_dict['labels'],
'log': log_dict, # Tensorboard logging
'progress_bar': log_dict, # Progress bar logging for TQDM
}
def test_epoch_end(self, test_step_outputs: List[dict]):
self.training_epoch_end(test_step_outputs, 'test')