-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_graph_reconstruction.py
205 lines (169 loc) · 13.1 KB
/
run_graph_reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import subprocess
tasks = ["md"]
dimension = [10]
# # dataset = ['california','grpc','road-m','web-edu']
# # dataset = ['cs_phd','web-edu','power','facebook','grpc', 'california','road-m', 'bio-diseasome','bio-wormnet']
dataset = ['grqc']
space_dims = [9,8,7,6,5,4,3,2,1,0]
def run_QGCN():
for task in tasks:
for dim in dimension:
for data in dataset:
for space_dim in space_dims:
lr = 0.01
command = "python train.py --task %s --dataset %s --model HGCN --lr %s --dim %d --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim %s --time_dim %s --epoch 2000" % (task, data, lr, dim, space_dim, dim-space_dim)
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/md510/"+data+"/pseudo_hyperboloid_skip_lr" + "_" + task + "_" + data + "_" + str(dim)+ "_" + str(space_dim)
stdout_name = prefix + ".out"
stderr_nameå = prefix + ".err"
print(stdout, stderr)
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
# dataset = ['airport', 'pubmed', 'citeseer','cora']
# space_dims = [15,14,13,8,3,2,1]
# tasks = ['nc']
# models = ['HNN']
def run_QGCN_nc():
for data in dataset:
for task in tasks:
for space_dim in space_dims:
for model in models:
command = "python train.py --task %s --dataset %s --model %s --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim %s --time_dim %s --epoch 1000" % (task, data, model,space_dim, 16-space_dim)
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/nc/pseudo_hyperboloid_skip_HNN"+ model + "_" + task + "_" + data + "_" + str(16)+ "_" + str(space_dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
print(stdout, stderr)
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
# tasks = ["md"]
# dimension = [10]
# # # dataset = ['california','grpc','road-m','web-edu']
# dataset = ['cs_phd','web-edu','power','facebook','grqc', 'california','road-m', 'bio-diseasome','bio-wormnet']
def run_Euclidean():
for task in tasks:
for dim in dimension:
for data in dataset:
command = "python train.py --task %s --dataset %s --model GCN --lr 0.01 --dim %d --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 1 --cuda 0 --epoch 1000" % (task, data, dim)
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/GCN"+ "_" + task + "_" + data + "_" + str(dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
print(stderr)
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
def run_MLP():
for task in tasks:
for dim in dimension:
for data in dataset:
command = "python train.py --task %s --dataset %s --model MLP --lr 0.01 --dim %d --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0 " % (task, data, dim)
# command = "python tran"
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/MLP"+ "_" + task + "_" + data + "_" + str(dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
print(stderr)
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
def run_HNN():
for task in tasks:
for dim in dimension:
for data in dataset:
command = "python train.py --task %s --dataset %s --model HNN --lr 0.01 --dim %d --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Hyperboloid --log-freq 5 --cuda 1 --c 1.0" % (task, data, dim)
# command = "python tran"
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/HNN"+ "_" + task + "_" + data + "_" + str(dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
print(stderr)
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
def run_HGCN():
for task in tasks:
for dim in dimension:
for data in dataset:
for manifold in ["Hyperboloid", "PoincareBall"]:
command = "python train.py --task %s --dataset %s --model HGCN --lr 0.01 --dim %d --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold %s --log-freq 5 --cuda 3" % (task, data, dim, manifold)
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./logs/" + manifold+ "_" + task + "_" + data + "_" + str(dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
print(stdout_name)
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
# dimension = [16]
# space_dims = [15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0]
def run_HGCN_cora():
for dim in dimension:
for space_dim in space_dims:
command = "python train.py --task nc --dataset citeseer --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim %s --time_dim %s" % (space_dim, dim-space_dim)
print(command)
process = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.PIPE, shell = True)
stdout, stderr = process.communicate()
process.wait()
prefix = "./nc/logs/" + 'pseudo'+ "_" + 'nc' + "_" + 'citeseer' + "_" + str(space_dim)
stdout_name = prefix + ".out"
stderr_name = prefix + ".err"
print(stdout_name)
with open(stdout_name, "w") as out, open(stderr_name, "w") as err:
out.write(stdout.decode("utf-8"))
err.write(stderr.decode("utf-8"))
if __name__ == "__main__":
#run_dummy_test()
# run_Euclidean()
# run_MLP()
# run_HNN()
run_QGCN()
# run_QGCN_nc()
# run_HGCN_cora()
# run_disease()
# run_Euclidean()
# python train.py --task md --dataset road-m --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda -1
# python train.py --task md --dataset bio-diseasome --model MLP --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0 97
# python train.py --task md --dataset cs_phd --model MLP --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task md --dataset road-m --model HGCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 0 --dropout 0 --weight-decay 0 --manifold PseudoHyperboloid --log-freq 5 --cuda -1 --space_dim 9 --time_dim 1
# python train.py --task md --dataset cycle_tree --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 1
# python train.py --task md --dataset web-edu --model HGCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold PseudoHyperboloid --log-freq 5 --space_dim 9 --time_dim 1 --cuda 1
# python train.py --task md --dataset bio-wormnet --model HNN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold PseudoHyperboloid --log-freq 5 --space_dim 8 --time_dim 2 --cuda 1
# python train.py --task md --dataset california --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task md --dataset cs_phd --model HNN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Hyperboloid --log-freq 5 --cuda 1 --c 1.0
# python train.py --task md --dataset tree_cycle --model MLP --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda -1
# python train.py --task nc --dataset cora --model GCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task nc --dataset cora --model HNN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task lp --dataset disease_lp --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task md --dataset cs_phd --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task nc --dataset cora --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 2
# python train.py --task md --dataset cycle_tree --model HGCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 7 --time_dim 3
# python train.py --task lp --dataset cora --model GCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.2 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task nc --dataset cora --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task nc --dataset cora --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task md --dataset cs_phd --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task md --dataset bio-diseasome --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task md --dataset bio-diseasome --model GCN --lr 0.01 --dim 10 --num-layers 2 --act relu --bias 1 --dropout 0 --weight-decay 0 --manifold Euclidean --log-freq 5 --cuda 0
# python train.py --task md --dataset bio-diseasome --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1
# python train.py --task md --dataset cs_phd --model HGCN --lr 0.01 --dim 16 --num-layers 2 --act relu --bias 1 --dropout 0.5 --weight-decay 0.0001 --manifold PseudoHyperboloid --log-freq 5 --cuda 0 --c None --space_dim 15 --time_dim 1