from pycobra.cobra import Cobra from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split # Create a dataset X, y = make_classification(n_samples=1000, n_features=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Initialize Pycobra's COBRA ensemble cobra = Cobra() # Add models to the ensemble cobra.models = [ ("RandomForest", RandomForestClassifier(n_estimators=10)), ("LogisticRegression", LogisticRegression()), ("SVC", SVC(probability=True)) ] # Fit COBRA to the training data cobra.fit(X_train, y_train)