-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcustom_retina_dataset.py
142 lines (122 loc) · 4.45 KB
/
custom_retina_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import random
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
import tqdm
from icon_registration import config
def get_dataset_retina(
extra_deformation=False,
downsample_factor=4,
blur_sigma=None,
warps_per_pair=20,
fixed_vertical_offset=None,
always_offset_bottom=False,
include_boundary=False,
scale=None,
split="train"
):
try:
import elasticdeform
import hub
except:
raise Exception(
"""the retina dataset requires the dependencies hub and elasticdeform.
Try pip install hub elasticdeform"""
)
ds_name = f"dataset_cache/retina___{extra_deformation}{downsample_factor}{blur_sigma}{warps_per_pair}{fixed_vertical_offset}{include_boundary}{scale}{split}{always_offset_bottom}.trch"
import os
if os.path.exists(ds_name):
augmented_ds1_tensor, augmented_ds2_tensor = torch.load(ds_name)
else:
res = []
for batch in hub.load("hub://activeloop/drive-train").pytorch(
num_workers=0, batch_size=4, shuffle=False
):
if include_boundary:
res.append(batch["manual_masks/mask"] ^ batch["masks/mask"])
else:
res.append(batch["manual_masks/mask"])
res = torch.cat(res)
ds_tensor = res[:, None, :, :, 0] * -1.0 + (not include_boundary)
if split == "test":
ds_tensor = ds_tensor[:3]
else:
ds_tensor = ds_tensor[3:]
ds_tensor = torch.cat([ds_tensor, torch.flip(ds_tensor, [2])], dim=0)
if fixed_vertical_offset is not None:
if always_offset_bottom:
ds2_tensor = torch.cat(
[ds_tensor, torch.zeros(ds_tensor.shape[0], 1, fixed_vertical_offset, 565)], axis=2
)
else:
ds2_tensor = torch.cat(
[torch.zeros(ds_tensor.shape[0], 1, fixed_vertical_offset, 565), ds_tensor], axis=2
)
ds1_tensor = torch.cat(
[ds_tensor, torch.zeros(ds_tensor.shape[0], 1, fixed_vertical_offset, 565)], axis=2
)
else:
ds2_tensor = ds_tensor
ds1_tensor = ds_tensor
warped_tensors = []
print("warping images to generate dataset")
for _ in tqdm.tqdm(range(warps_per_pair)):
ds_2_list = []
for el in ds2_tensor:
case = el[0]
# TODO implement random warping on gpu
case_warped = np.array(case)
if extra_deformation:
case_warped = elasticdeform.deform_random_grid(
case_warped, sigma=60, points=3
)
case_warped = elasticdeform.deform_random_grid(
case_warped, sigma=25, points=3
)
case_warped = elasticdeform.deform_random_grid(
case_warped, sigma=12, points=6, zoom=scale
)
ds_2_list.append(torch.tensor(case_warped)[None, None, :, :])
ds_2_tensor = torch.cat(ds_2_list)
warped_tensors.append(ds_2_tensor)
augmented_ds2_tensor = torch.cat(warped_tensors)
augmented_ds1_tensor = torch.cat([ds1_tensor for _ in range(warps_per_pair)])
torch.save((augmented_ds1_tensor, augmented_ds2_tensor), ds_name)
batch_size = 10
import torchvision.transforms.functional as Fv
if blur_sigma is None:
ds1 = torch.utils.data.TensorDataset(
F.avg_pool2d(augmented_ds1_tensor, downsample_factor)
)
else:
ds1 = torch.utils.data.TensorDataset(
Fv.gaussian_blur(
F.avg_pool2d(augmented_ds1_tensor, downsample_factor),
4 * blur_sigma + 1,
blur_sigma,
)
)
d1 = torch.utils.data.DataLoader(
ds1,
batch_size=batch_size,
shuffle=False,
)
if blur_sigma is None:
ds2 = torch.utils.data.TensorDataset(
F.avg_pool2d(augmented_ds2_tensor, downsample_factor)
)
else:
ds2 = torch.utils.data.TensorDataset(
Fv.gaussian_blur(
F.avg_pool2d(augmented_ds2_tensor, downsample_factor),
4 * blur_sigma + 1,
blur_sigma,
)
)
d2 = torch.utils.data.DataLoader(
ds2,
batch_size=batch_size,
shuffle=False,
)
return d1, d2