-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabdomen_eval.py
144 lines (112 loc) · 4.2 KB
/
abdomen_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse
import os
import random
import footsteps
footsteps.initialize(output_root="evaluation_results/")
import icon_registration as icon
import icon_registration.itk_wrapper as itk_wrapper
import itk
import numpy as np
import torch
import utils
parser = argparse.ArgumentParser()
parser.add_argument("weights_path" )
parser.add_argument("--finetune", action="store_true")
parser.add_argument("--writeimages", action="store_true")
args = parser.parse_args()
weights_path = args.weights_path
def preprocess(image):
image = itk.CastImageFilter[type(image), itk.Image[itk.F, 3]].New()(image)
print(type(image))
max_ = np.max(np.array(image))
image = itk.shift_scale_image_filter(image, shift=0.0, scale=1.0 / max_)
# image = itk.clamp_image_filter(image, bounds=(0, 1))
return image
input_shape = [1, 1, 175, 175, 175]
import equivariant_reg
net = equivariant_reg.make_network_final_final([1, 1, 175, 175, 175], 3)
net.regis_net = icon.TwoStepRegistration(net.regis_net,
icon.FunctionFromVectorField(icon.networks.tallUNet2(dimension=3)))
net.assign_identity_map(input_shape)
#multiscale_constr_model.multiscale_affine_model
#
#qq = torch.nn.Module()
#qq.module = net
utils.log(net.regis_net.load_state_dict(torch.load(weights_path), strict=True))
net.eval()
dices = []
flips = []
ICON_errors=[]
import glob
def get_validation_images():
res = []
for i in range(800,888):
name = f"/playpen-raid2/Data/AbdomenCT-1K/HastingsProcessed/results/pad_color_fix-4/val/stretched_masks/Case_{i:05}_0000.nii.gz"
try:
itk.imread(name)
except:
continue
res.append(f"{i:05}")
return res
def get_image(n):
name = f"/playpen-raid2/Data/AbdomenCT-1K/HastingsProcessed/results/pad_color_fix-4/val/stretched_imgs/Case_{n}_0000.nii.gz"
import subprocess
#subprocess.run(["vshow", "-y", "-max", name])
return itk.imread(name)
def get_sub_seg(n):
name = f"/playpen-raid2/Data/AbdomenCT-1K/HastingsProcessed/results/pad_color_fix-4/val/stretched_masks/Case_{n}_0000.nii.gz"
mask = itk.imread(name)
return mask
atlas_registered = get_validation_images()
random.seed(1)
for _ in range(30):
n_A, n_B = (random.choice(atlas_registered) for _ in range(2))
image_A, image_B = (preprocess(get_image(n)) for n in (n_A, n_B))
# import pdb; pdb.set_trace()
import time
start = time.time()
phi_AB, phi_BA, loss = itk_wrapper.register_pair(
net,
image_A,
image_B,
finetune_steps=(50 if args.finetune == True else None),
return_artifacts=True,
)
end = time.time()
print("time", end - start)
segmentation_A, segmentation_B = (get_sub_seg(n) for n in (n_A, n_B))
interpolator = itk.NearestNeighborInterpolateImageFunction.New(segmentation_A)
warped_segmentation_A = itk.resample_image_filter(
segmentation_A,
transform=phi_AB,
interpolator=interpolator,
use_reference_image=True,
reference_image=segmentation_B,
)
mean_dice = utils.itk_mean_dice(segmentation_B, warped_segmentation_A)
if args.writeimages:
casedir = footsteps.output_dir + str(_) + "/"
os.mkdir(casedir)
itk.imwrite(image_A, casedir + "imageA.nii.gz")
itk.imwrite(image_B, casedir + "imageB.nii.gz")
itk.imwrite(segmentation_A, casedir + "segmentation_A.nii.gz")
itk.imwrite(segmentation_B, casedir + "segmentation_B.nii.gz")
itk.imwrite(warped_segmentation_A, casedir+ "warpedseg.nii.gz")
itk.transformwrite([phi_AB], casedir + "trans.hdf5")
utils.log(_)
utils.log(n_A, n_B)
utils.log(mean_dice)
dices.append(mean_dice)
flips.append(loss.flips)
scale=150
zz = (net.phi_AB(net.phi_BA(net.identity_map)) - net.identity_map) * scale
icon_error = torch.mean(torch.sqrt(torch.sum(zz**2, axis=1))).item()
ICON_errors.append(icon_error)
utils.log("ICON_error", icon_error)
utils.log("mean ICON error", np.mean(ICON_errors))
utils.log("Mean DICE")
utils.log(np.mean(dices))
utils.log("Mean flips")
utils.log(np.mean(flips))
utils.log("flips / prod(imnput_shape", np.mean(flips) / np.prod(input_shape))
utils.log("percent J", 100 * np.mean(flips) / np.prod(input_shape))