-
-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathtorch_utils.py
484 lines (406 loc) · 21.1 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
"""PyTorch utils."""
import math
import os
import platform
import subprocess
import time
import warnings
from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from utils.general import LOGGER, check_version, colorstr, file_date, git_describe
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv("RANK", -1))
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1))
try:
import thop # for FLOPs computation
except ImportError:
thop = None
# Suppress PyTorch warnings
warnings.filterwarnings("ignore", message="User provided device_type of 'cuda', but CUDA is not available. Disabling")
warnings.filterwarnings("ignore", category=UserWarning)
def smart_inference_mode(torch_1_9=check_version(torch.__version__, "1.9.0")):
"""Applies torch.inference_mode() if torch>=1.9.0 or torch.no_grad() otherwise as a decorator to functions."""
def decorate(fn):
"""Applies torch.inference_mode() if torch>=1.9.0, otherwise torch.no_grad(), as a decorator to functions."""
return (torch.inference_mode if torch_1_9 else torch.no_grad)()(fn)
return decorate
def smartCrossEntropyLoss(label_smoothing=0.0):
"""Returns CrossEntropyLoss with optional label smoothing for torch>=1.10.0; warns if label smoothing used with
older versions.
"""
if check_version(torch.__version__, "1.10.0"):
return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
if label_smoothing > 0:
LOGGER.warning(f"WARNING ⚠️ label smoothing {label_smoothing} requires torch>=1.10.0")
return nn.CrossEntropyLoss()
def smart_DDP(model):
"""
Initializes DDP for a model with version checks; fails for torch==1.12.0 due to known issues.
See https://github.com/ultralytics/yolov5/issues/8395.
"""
assert not check_version(torch.__version__, "1.12.0", pinned=True), (
"torch==1.12.0 torchvision==0.13.0 DDP training is not supported due to a known issue. "
"Please upgrade or downgrade torch to use DDP. See https://github.com/ultralytics/yolov5/issues/8395"
)
if check_version(torch.__version__, "1.11.0"):
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK, static_graph=True)
else:
return DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
def reshape_classifier_output(model, n=1000):
"""Reshapes the last layer of a model to have 'n' outputs; supports YOLOv3, ResNet, EfficientNet, adjusting Linear
and Conv2d layers.
"""
from models.common import Classify
name, m = list((model.model if hasattr(model, "model") else model).named_children())[-1] # last module
if isinstance(m, Classify): # YOLOv3 Classify() head
if m.linear.out_features != n:
m.linear = nn.Linear(m.linear.in_features, n)
elif isinstance(m, nn.Linear): # ResNet, EfficientNet
if m.out_features != n:
setattr(model, name, nn.Linear(m.in_features, n))
elif isinstance(m, nn.Sequential):
types = [type(x) for x in m]
if nn.Linear in types:
i = types.index(nn.Linear) # nn.Linear index
if m[i].out_features != n:
m[i] = nn.Linear(m[i].in_features, n)
elif nn.Conv2d in types:
i = types.index(nn.Conv2d) # nn.Conv2d index
if m[i].out_channels != n:
m[i] = nn.Conv2d(m[i].in_channels, n, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None)
@contextmanager
def torch_distributed_zero_first(local_rank: int):
"""Context manager ensuring ordered execution in distributed training by synchronizing local masters first."""
if local_rank not in [-1, 0]:
dist.barrier(device_ids=[local_rank])
yield
if local_rank == 0:
dist.barrier(device_ids=[0])
def device_count():
"""Returns the count of available CUDA devices; supports Linux and Windows, using nvidia-smi."""
assert platform.system() in ("Linux", "Windows"), "device_count() only supported on Linux or Windows"
try:
cmd = "nvidia-smi -L | wc -l" if platform.system() == "Linux" else 'nvidia-smi -L | find /c /v ""' # Windows
return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
except Exception:
return 0
def select_device(device="", batch_size=0, newline=True):
"""Selects the device for running models, handling CPU, GPU, and MPS with optional batch size divisibility check."""
s = f"YOLOv3 🚀 {git_describe() or file_date()} Python-{platform.python_version()} torch-{torch.__version__} "
device = str(device).strip().lower().replace("cuda:", "").replace("none", "") # to string, 'cuda:0' to '0'
cpu = device == "cpu"
mps = device == "mps" # Apple Metal Performance Shaders (MPS)
if cpu or mps:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # force torch.cuda.is_available() = False
elif device: # non-cpu device requested
os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available()
assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(",", "")), (
f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
)
if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available
devices = device.split(",") if device else "0" # range(torch.cuda.device_count()) # i.e. 0,1,6,7
n = len(devices) # device count
if n > 1 and batch_size > 0: # check batch_size is divisible by device_count
assert batch_size % n == 0, f"batch-size {batch_size} not multiple of GPU count {n}"
space = " " * (len(s) + 1)
for i, d in enumerate(devices):
p = torch.cuda.get_device_properties(i)
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB
arg = "cuda:0"
elif mps and getattr(torch, "has_mps", False) and torch.backends.mps.is_available(): # prefer MPS if available
s += "MPS\n"
arg = "mps"
else: # revert to CPU
s += "CPU\n"
arg = "cpu"
if not newline:
s = s.rstrip()
LOGGER.info(s)
return torch.device(arg)
def time_sync():
"""Synchronizes PyTorch across available CUDA devices and returns current time in seconds."""
if torch.cuda.is_available():
torch.cuda.synchronize()
return time.time()
def profile(input, ops, n=10, device=None):
"""YOLOv3 speed/memory/FLOPs profiler
Usage:
input = torch.randn(16, 3, 640, 640)
m1 = lambda x: x * torch.sigmoid(x)
m2 = nn.SiLU()
profile(input, [m1, m2], n=100) # profile over 100 iterations.
"""
results = []
if not isinstance(device, torch.device):
device = select_device(device)
print(
f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
f"{'input':>24s}{'output':>24s}"
)
for x in input if isinstance(input, list) else [input]:
x = x.to(device)
x.requires_grad = True
for m in ops if isinstance(ops, list) else [ops]:
m = m.to(device) if hasattr(m, "to") else m # device
m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward
try:
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1e9 * 2 # GFLOPs
except Exception:
flops = 0
try:
for _ in range(n):
t[0] = time_sync()
y = m(x)
t[1] = time_sync()
try:
_ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
t[2] = time_sync()
except Exception: # no backward method
# print(e) # for debug
t[2] = float("nan")
tf += (t[1] - t[0]) * 1000 / n # ms per op forward
tb += (t[2] - t[1]) * 1000 / n # ms per op backward
mem = torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0 # (GB)
s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y)) # shapes
p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters
print(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}")
results.append([p, flops, mem, tf, tb, s_in, s_out])
except Exception as e:
print(e)
results.append(None)
torch.cuda.empty_cache()
return results
def is_parallel(model):
"""Checks if a model is using DataParallel (DP) or DistributedDataParallel (DDP)."""
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
def de_parallel(model):
"""Returns a single-GPU model if input model is using DataParallel (DP) or DistributedDataParallel (DDP)."""
return model.module if is_parallel(model) else model
def initialize_weights(model):
"""Initializes weights for Conv2D, BatchNorm2d, and activation layers (Hardswish, LeakyReLU, ReLU, ReLU6, SiLU) in a
model.
"""
for m in model.modules():
t = type(m)
if t is nn.Conv2d:
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif t is nn.BatchNorm2d:
m.eps = 1e-3
m.momentum = 0.03
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
m.inplace = True
def find_modules(model, mclass=nn.Conv2d):
"""Finds indices of layers in 'model' matching 'mclass'; default searches for 'nn.Conv2d'."""
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
def sparsity(model):
"""Calculates and returns the global sparsity of a model as the ratio of zero-valued parameters to total
parameters.
"""
a, b = 0, 0
for p in model.parameters():
a += p.numel()
b += (p == 0).sum()
return b / a
def prune(model, amount=0.3):
"""Prunes Conv2d layers in a model to a specified global sparsity using l1 unstructured pruning."""
import torch.nn.utils.prune as prune
for name, m in model.named_modules():
if isinstance(m, nn.Conv2d):
prune.l1_unstructured(m, name="weight", amount=amount) # prune
prune.remove(m, "weight") # make permanent
LOGGER.info(f"Model pruned to {sparsity(model):.3g} global sparsity")
def fuse_conv_and_bn(conv, bn):
"""Fuses Conv2d and BatchNorm2d layers for efficiency; see https://tehnokv.com/posts/fusing-batchnorm-and-conv/."""
fusedconv = (
nn.Conv2d(
conv.in_channels,
conv.out_channels,
kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding,
dilation=conv.dilation,
groups=conv.groups,
bias=True,
)
.requires_grad_(False)
.to(conv.weight.device)
)
# Prepare filters
w_conv = conv.weight.clone().view(conv.out_channels, -1)
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
# Prepare spatial bias
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
return fusedconv
def model_info(model, verbose=False, imgsz=640):
"""
Prints model layers, parameters, gradients, and GFLOPs if verbose; handles various `imgsz`.
Usage: model_info(model).
"""
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace("module_list.", "")
print(
"%5g %40s %9s %12g %20s %10.3g %10.3g"
% (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())
)
try: # FLOPs
p = next(model.parameters())
stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride
im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format
flops = thop.profile(deepcopy(model), inputs=(im,), verbose=False)[0] / 1e9 * 2 # stride GFLOPs
imgsz = imgsz if isinstance(imgsz, list) else [imgsz, imgsz] # expand if int/float
fs = f", {flops * imgsz[0] / stride * imgsz[1] / stride:.1f} GFLOPs" # 640x640 GFLOPs
except Exception:
fs = ""
name = Path(model.yaml_file).stem.replace("yolov5", "YOLOv3") if hasattr(model, "yaml_file") else "Model"
LOGGER.info(f"{name} summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416)
"""Scales and optionally pads an image tensor to a specified ratio, maintaining its aspect ratio constrained by
`gs`.
"""
if ratio == 1.0:
return img
h, w = img.shape[2:]
s = (int(h * ratio), int(w * ratio)) # new size
img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize
if not same_shape: # pad/crop img
h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
def copy_attr(a, b, include=(), exclude=()):
"""Copies attributes from object b to a, with options to include or exclude specific attributes."""
for k, v in b.__dict__.items():
if (len(include) and k not in include) or k.startswith("_") or k in exclude:
continue
else:
setattr(a, k, v)
def smart_optimizer(model, name="Adam", lr=0.001, momentum=0.9, decay=1e-5):
"""Initializes a smart optimizer for YOLOv3 with custom parameter groups for different weight decays and biases."""
g = [], [], [] # optimizer parameter groups
bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d()
for v in model.modules():
for p_name, p in v.named_parameters(recurse=0):
if p_name == "bias": # bias (no decay)
g[2].append(p)
elif p_name == "weight" and isinstance(v, bn): # weight (no decay)
g[1].append(p)
else:
g[0].append(p) # weight (with decay)
if name == "Adam":
optimizer = torch.optim.Adam(g[2], lr=lr, betas=(momentum, 0.999)) # adjust beta1 to momentum
elif name == "AdamW":
optimizer = torch.optim.AdamW(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0)
elif name == "RMSProp":
optimizer = torch.optim.RMSprop(g[2], lr=lr, momentum=momentum)
elif name == "SGD":
optimizer = torch.optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True)
else:
raise NotImplementedError(f"Optimizer {name} not implemented.")
optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay
optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights)
LOGGER.info(
f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}) with parameter groups "
f"{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias"
)
return optimizer
def smart_hub_load(repo="ultralytics/yolov5", model="yolov5s", **kwargs):
"""
Loads YOLO model from Ultralytics repo with smart error handling, supports `force_reload` on failure.
See https://github.com/ultralytics/yolov5
"""
if check_version(torch.__version__, "1.9.1"):
kwargs["skip_validation"] = True # validation causes GitHub API rate limit errors
if check_version(torch.__version__, "1.12.0"):
kwargs["trust_repo"] = True # argument required starting in torch 0.12
try:
return torch.hub.load(repo, model, **kwargs)
except Exception:
return torch.hub.load(repo, model, force_reload=True, **kwargs)
def smart_resume(ckpt, optimizer, ema=None, weights="yolov5s.pt", epochs=300, resume=True):
"""Resumes or fine-tunes training from a checkpoint with optimizer and EMA support; updates epochs based on
progress.
"""
best_fitness = 0.0
start_epoch = ckpt["epoch"] + 1
if ckpt["optimizer"] is not None:
optimizer.load_state_dict(ckpt["optimizer"]) # optimizer
best_fitness = ckpt["best_fitness"]
if ema and ckpt.get("ema"):
ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) # EMA
ema.updates = ckpt["updates"]
if resume:
assert start_epoch > 0, (
f"{weights} training to {epochs} epochs is finished, nothing to resume.\n"
f"Start a new training without --resume, i.e. 'python train.py --weights {weights}'"
)
LOGGER.info(f"Resuming training from {weights} from epoch {start_epoch} to {epochs} total epochs")
if epochs < start_epoch:
LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
epochs += ckpt["epoch"] # finetune additional epochs
return best_fitness, start_epoch, epochs
class EarlyStopping:
"""Monitors training to halt if no improvement in fitness metric is observed for a specified number of epochs."""
def __init__(self, patience=30):
"""Initializes EarlyStopping to monitor training, halting if no improvement in 'patience' epochs, defaulting to
30.
"""
self.best_fitness = 0.0 # i.e. mAP
self.best_epoch = 0
self.patience = patience or float("inf") # epochs to wait after fitness stops improving to stop
self.possible_stop = False # possible stop may occur next epoch
def __call__(self, epoch, fitness):
"""Updates stopping criteria based on fitness; returns True to stop if no improvement in 'patience' epochs."""
if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training
self.best_epoch = epoch
self.best_fitness = fitness
delta = epoch - self.best_epoch # epochs without improvement
self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch
stop = delta >= self.patience # stop training if patience exceeded
if stop:
LOGGER.info(
f"Stopping training early as no improvement observed in last {self.patience} epochs. "
f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n"
f"To update EarlyStopping(patience={self.patience}) pass a new patience value, "
f"i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping."
)
return stop
class ModelEMA:
"""Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage.
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
"""Initializes EMA with model, optional decay (default 0.9999), tau (2000), and updates count, setting model to
eval mode.
"""
self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA
self.updates = updates # number of EMA updates
self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs)
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
"""Updates EMA parameters based on model weights, decay factor, and increment update count."""
self.updates += 1
d = self.decay(self.updates)
msd = de_parallel(model).state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point: # true for FP16 and FP32
v *= d
v += (1 - d) * msd[k].detach()
# assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype} and model {msd[k].dtype} must be FP32'
def update_attr(self, model, include=(), exclude=("process_group", "reducer")):
"""Updates EMA attributes by copying from model, excluding 'process_group' and 'reducer' by default."""
copy_attr(self.ema, model, include, exclude)