-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPreprocessor.py
607 lines (526 loc) · 23.2 KB
/
Preprocessor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
import re
import json
import string
import numpy as np
from gensim.models import Word2Vec
from keras.utils import to_categorical
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from DependencyTermExtractor import DependencyTermExtractor
MAX_LENGTH = 50
EMBEDDING_SIZE = 500
ASPECT_LIST = [
'others',
'machine',
'part',
'price',
'service',
'fuel'
]
class Preprocessor():
def __init__(
self,
module_name = 'aspect',
train_file = None,
test_file = None,
lowercase = True,
remove_punct = True,
embedding = True,
pos_tag = 'embedding',
dependency = True,
use_entity = True,
position_embd = False,
mask_entity = False,
use_lexicon = None,
use_op_target = None):
self.module_name = module_name
self.train_file = train_file
self.test_file = test_file
self.lowercase = lowercase
self.remove_punct = remove_punct
self.embedding = embedding
self.pos_tag = pos_tag
self.dependency = dependency
self.use_entity = use_entity
self.position_embd = position_embd
self.mask_entity = mask_entity
self.use_lexicon = use_lexicon
self.use_op_target = use_op_target
self.punctuations = set(string.punctuation)
def __lower(self, text):
return text.lower() if self.lowercase else text
def __remove_punct(self, text):
if self.remove_punct:
if self.mask_entity:
clean = re.sub(r"[,.;@?!&$]+\ *", " ", text)
else:
clean = re.sub(r"[,.;@#?!&$]+\ *", " ", text)
return clean
def __load_embedding(self):
print("Loading word embedding...")
with open('resource/w2v_path.txt') as file:
word2vec_path = file.readlines()[0]
w2v = Word2Vec.load(word2vec_path)
return w2v
def __load_json(self, path_file):
with open(path_file, 'r') as f:
json_data = json.load(f)
return json_data
def __load_txt(self, path_file):
with open(path_file, 'r', encoding='utf-8') as f:
txt_data = f.read().splitlines()
return txt_data
def read_data_for_aspect(self, json_path):
json_data = self.__load_json(json_path)
review = list()
if self.use_entity:
for data in json_data:
for _ in data['info']:
if self.mask_entity:
temp = self.__lower(data['masked_sentence'])
else:
temp = self.__lower(data['sentence'])
temp = self.__remove_punct(temp)
review.append(temp)
else:
for data in json_data:
if self.mask_entity:
temp = self.__lower(data['masked_sentence'])
else:
temp = self.__lower(data['sentence'])
temp = self.__remove_punct(temp)
review.append(temp)
return review
def __read_aspect(self, json_path):
label = list()
data = self.__load_json(json_path)
if self.use_entity:
for i, datum in enumerate(data):
for info in datum['info']:
temp = list()
for aspect in info['aspect']:
temp.append(aspect.split('|')[0])
label.append(temp)
else:
for i, datum in enumerate(data):
temp = list()
for info in datum['info']:
for aspect in info['aspect']:
temp.append(aspect.split('|')[0])
label.append(temp)
encoded_label = list()
for aspects in label:
temp = np.zeros(len(ASPECT_LIST), dtype=int)
for aspect in aspects:
for i, asp in enumerate(ASPECT_LIST):
if asp in aspect:
temp[i] = 1
encoded_label.append(temp)
print('Label shape :', np.array(encoded_label).shape)
print('Example label:', encoded_label[0])
return np.array(encoded_label)
def read_data_for_sentiment(self, json_path):
data = self.__load_json(json_path)
review = list()
if self.use_entity:
for datum in data:
for info in datum['info']:
for aspect in info['aspect']:
if self.mask_entity:
temp = self.__lower(datum['masked_sentence'])
else:
temp = self.__lower(datum['sentence'])
temp = self.__remove_punct(temp)
review.append(temp)
# else:
# for datum in data:
# for info in datum['info']:
# temp = self.__lower(datum['sentence'])
# temp = self.__remove_punct(temp)
# review.append(temp)
return review
def __aspect2idx(self, data):
print('panjang data: ', len(data))
new = np.zeros(len(data))
for i in range(len(data)):
if data[i] == 'others':
new[i] = 0
elif data[i] == 'machine':
new[i] = 1
elif data[i] == 'part':
new[i] = 2
elif data[i] == 'price':
new[i] = 3
elif data[i] == 'service':
new[i] = 4
elif data[i] == 'fuel':
new[i] = 5
if not self.embedding:
new = to_categorical(new, num_classes=6)
return new
def read_sentiment(self, json_path, review):
data = self.__load_json(json_path)
label = list()
aspects = list()
if self.use_entity:
for i, datum in enumerate(data):
for info in datum['info']:
for aspect in info['aspect']:
if aspect.split('|')[1] == 'negative':
label.append(0)
elif aspect.split('|')[1] == 'positive':
label.append(1)
aspects.append(aspect.split('|')[0])
# for i in range(len(review)):
# print(i)
# print(review[i])
# print(aspects[i], label[i])
label = to_categorical(label, num_classes=2)
aspects = self.__aspect2idx(aspects)
new_aspect = list()
for asp in aspects:
temp = list()
for i in range(MAX_LENGTH):
temp.append(asp)
new_aspect.append(temp)
print('Sentiment aspect shape :', np.array(new_aspect).shape)
return np.array(label), np.array(new_aspect)
def get_entities(self, json_path):
data = self.__load_json(json_path)
entities = list()
for datum in data:
for info in datum['info']:
# if self.module_name == 'aspect':
if info['name'] != None:
entities.append(info['name'])
else:
entities.append('None')
# elif self.module_name == 'sentiment':
# if info['name'] != None:
# for aspect in info['aspect']:
# entities.append(info['name'])
# else:
# for aspect in info['aspect']:
# entities.append('None')
return entities
def get_pos_dict(self):
pos_dict = self.__load_json('resource/pos_dict.json')
pos_size = len(pos_dict) + 2
return pos_dict, pos_size
def read_pos(self, json_path):
pos = list()
pos_dict, _ = self.get_pos_dict()
pos_data = self.__load_json(json_path)
if json_path == 'resource/postag_train_auto.json':
json_data = self.__load_json(self.train_file)
elif json_path == 'resource/postag_test_auto.json':
json_data = self.__load_json(self.test_file)
for i, data in enumerate(json_data):
temp = np.zeros(MAX_LENGTH, dtype=int)
idx = 0
for j in range(len(pos_data[i]['sentences'])):
for token in pos_data[i]['sentences'][j]['tokens']:
if self.remove_punct:
if pos_dict[token['pos_tag']] != 'PUN':
temp[idx] = pos_dict[token['pos_tag']]
idx += 1
else:
temp[idx] = pos_dict[token['pos_tag']]
idx += 1
if idx == MAX_LENGTH - 1:
break
if idx == MAX_LENGTH - 1:
break
if self.module_name == 'aspect':
if self.use_entity:
for _ in data['info']:
pos.append(temp)
else:
pos.append(temp)
elif self.module_name == 'sentiment':
if self.use_entity:
for info in data['info']:
for _ in info['aspect']:
pos.append(temp)
pos = np.array(pos)
return pos
def get_sentiment_lexicons(self, file):
with open('resource/positif.txt', 'r', encoding='utf-8') as f:
positive = f.read().splitlines()
with open('resource/negatif.txt', 'r', encoding='utf-8') as f:
negative = f.read().splitlines()
pos_neg_all = list()
review = self.read_data_for_sentiment(file)
for sentence in review:
pos_neg = np.zeros(MAX_LENGTH)
for neg in negative:
if neg in sentence:
split_neg = neg.split()
len_neg = len(split_neg)
split_sen = sentence.split()
for i, token in enumerate(split_sen):
if split_neg[0] in token:
for j in range(i, i+len_neg):
pos_neg[j] = 2
if j == MAX_LENGTH - 1:
break
if i == MAX_LENGTH - 1:
break
for pos in positive:
if pos in sentence:
split_pos = pos.split()
len_pos = len(split_pos)
split_sen = sentence.split()
for i, token in enumerate(split_sen):
if split_pos[0] in token:
for j in range(i, i+len_pos):
if pos_neg[j] != 2:
pos_neg[j] = 1
if j == MAX_LENGTH - 1:
break
if i == MAX_LENGTH - 1:
break
pos_neg_all.append(pos_neg)
return np.array(pos_neg_all)
def get_positional_embedding_without_masking(self, entity_path):
list_position = list()
entity_json = self.__load_json(entity_path)
for sentence in entity_json:
for ent in sentence['info']:
if ent['name'] != None:
dist = 0
position = list()
entity = ent['name'].lower()
entity = re.sub('ku', '', entity)
entity = re.sub('-nya', '', entity)
entity = re.sub('nya', '', entity)
e_split = entity.split()
e_first = e_split[0]
split = (sentence['sentence'].lower()).split()
for token in split:
if e_first in token:
loc = split.index(token)
break
dist = dist - loc
for j in range(0,loc):
position.append(dist)
dist += 1
for j in range(loc,loc+len(e_split)):
position.append(dist)
for j in range(loc+len(e_split), len(split)):
dist += 1
position.append(dist)
for j in range(len(split), MAX_LENGTH):
position.append(1000)
position = position[:MAX_LENGTH]
if self.module_name == 'aspect':
# print(split)
# print(position)
# print('=======================================================')
list_position.append(position)
elif self.module_name == 'sentiment':
for _ in ent['aspect']:
# print(split)
# print(position)
# print('=======================================================')
list_position.append(position)
else:
dist = 0
position = list()
split = (sentence['sentence'].lower()).split()
for j in range(0, len(split)):
position.append(dist)
for j in range(len(split), MAX_LENGTH):
position.append(1000)
position = position[:MAX_LENGTH]
if self.module_name == 'aspect':
# print(split)
# print(position)
# print('=======================================================')
list_position.append(position)
elif self.module_name == 'sentiment':
for _ in ent['aspect']:
# print(split)
# print(position)
# print('=======================================================')
list_position.append(position)
return np.array(list_position)
def get_positional_embedding_with_masking(self, entity_path):
position = list()
entity_file = self.__load_json(entity_path)
for a, review in enumerate(entity_file):
split = (review['masked_sentence'].lower()).split()
for name in review['info']:
if name['name'] != None:
ent_name = name['entity_name']
for i, token in enumerate(split):
if ent_name in token:
temp = list()
dist = 0 - i
for j in range(0, i):
temp.append(dist)
dist += 1
dist = 0
temp.append(dist)
for j in range(i+1, len(split)):
dist += 1
temp.append(dist)
for j in range(len(split), MAX_LENGTH):
temp.append(1000)
if self.module_name == 'aspect':
position.append(temp[:MAX_LENGTH])
elif self.module_name == 'sentiment':
for _ in name['aspect']:
position.append(temp[:MAX_LENGTH])
else:
temp = list()
for j in range(0, len(split)):
temp.append(0)
for j in range(len(split), MAX_LENGTH):
temp.append(1000)
if self.module_name == 'aspect':
position.append(temp[:MAX_LENGTH])
elif self.module_name == 'sentiment':
for _ in name['aspect']:
position.append(temp[:MAX_LENGTH])
return np.array(position)
def get_tokenized(self):
review = self.read_data_for_aspect(self.train_file)
if self.remove_punct:
tokenizer = Tokenizer(oov_token=True)
else:
tokenizer = Tokenizer(filters='', oov_token=True)
tokenizer.fit_on_texts(review)
return tokenizer
def get_vocab_size(self, tokenizer):
return len(tokenizer.word_index) + 1
def get_encoded_input(self):
tokenizer = self.get_tokenized()
if self.module_name == 'aspect':
review = self.read_data_for_aspect(self.train_file)
review_test = self.read_data_for_aspect(self.test_file)
elif self.module_name == 'sentiment':
review = self.read_data_for_sentiment(self.train_file)
review_test = self.read_data_for_sentiment(self.test_file)
encoded_data = tokenizer.texts_to_sequences(review)
encoded_data_test = tokenizer.texts_to_sequences(review_test)
x_train = pad_sequences(encoded_data, maxlen=MAX_LENGTH, padding='post')
x_test = pad_sequences(encoded_data_test, maxlen=MAX_LENGTH, padding='post')
return x_train, x_test
def get_embedding_matrix(self, tokenizer):
w2v = self.__load_embedding()
words = list(w2v.wv.vocab)
embeddings_index = dict()
print("Creating embedding matrix...")
for word in words:
coefs = w2v[word]
embeddings_index[word] = coefs
vocab_size = self.get_vocab_size(tokenizer)
embedding_matrix = np.zeros((vocab_size, EMBEDDING_SIZE))
for word, i in tokenizer.word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
else:
embedding_matrix[i] = np.random.rand(500)
return embedding_matrix
def get_embedded_input(self):
w2v = self.__load_embedding()
words = list(w2v.wv.vocab)
print("Getting all embedding vector...")
if self.module_name is 'aspect':
review = self.read_data_for_aspect(self.train_file)
review_test = self.read_data_for_aspect(self.test_file)
print("Successfully read aspect data")
elif self.module_name is 'sentiment':
review = self.read_data_for_sentiment(self.train_file)
review_test = self.read_data_for_sentiment(self.test_file)
print("Successfully read sentiment data")
review_list = [review, review_test]
x_train = list()
x_test = list()
x_list = [x_train, x_test]
for i, reviews in enumerate(review_list):
for review in reviews:
splitted = review.split()
temp = list()
for j, word in enumerate(splitted):
if word in words and i < MAX_LENGTH:
temp.append(w2v[word])
else:
temp.append(np.zeros(EMBEDDING_SIZE))
len_review = len(temp)
for j in range(len_review, MAX_LENGTH):
temp.append(np.zeros(EMBEDDING_SIZE))
x_list[i].append(temp)
return np.array(x_train), np.array(x_test)
def get_pos_matrix(self):
return np.random.rand(27, 30)
def get_encoded_pos(self, pos):
return to_categorical(pos, num_classes = 26)
def get_encoded_term(self, trees):
e = DependencyTermExtractor()
term = list()
for i, tree in enumerate(trees):
temp = e.get_position_target(tree)
term.append(temp)
term = to_categorical(term, num_classes=2)
return term
def __concatenate(self, sentences_a, sentences_b):
concat = list()
print('dimensi word:', sentences_a.shape)
print('dimensi aspek:', sentences_b.shape)
for i, sentence in enumerate(sentences_a):
temp = list()
for j, word in enumerate(sentence):
temp.append(np.concatenate((word, sentences_b[i][j]), axis=0))
concat.append(temp)
return np.array(concat)
def get_all_input_aspect(self):
if self.embedding:
x_train, x_test = self.get_encoded_input()
else:
x_train, x_test = self.get_embedded_input()
if self.pos_tag == 'one_hot':
pos_train = self.read_pos('resource/postag_train_auto.json')
pos_test = self.read_pos('resource/postag_test_auto.json')
encoded_train = self.get_encoded_pos(pos_train)
encoded_test = self.get_encoded_pos(pos_test)
x_train = self.__concatenate(x_train, encoded_train)
x_test = self.__concatenate(x_test, encoded_test)
if self.dependency:
json_train = self.__load_json('resource/dependency_train_auto.json')
json_test = self.__load_json('resource/dependency_train_auto.json')
encoded_train = self.get_encoded_term(json_train)
encoded_test = self.get_encoded_term(json_test)
x_train = self.__concatenate(x_train, encoded_train)
x_test = self.__concatenate(x_test, encoded_test)
y_train = self.__read_aspect(self.train_file)
y_test = self.__read_aspect(self.test_file)
return x_train, y_train, x_test, y_test
def get_all_input_sentiment(self):
if self.embedding:
x_train, x_test = self.get_encoded_input()
y_train, aspect_train = self.read_sentiment(self.train_file, x_train)
y_test, aspect_test = self.read_sentiment(self.test_file, x_test)
else:
x_train, x_test = self.get_embedded_input()
y_train, aspect_train = self.read_sentiment(self.train_file, x_train)
y_test, aspect_test = self.read_sentiment(self.test_file, x_test)
x_train = self.__concatenate(x_train, aspect_train)
x_test = self.__concatenate(x_test, aspect_test)
if self.pos_tag == 'one_hot':
pos_train = self.read_pos('resource/postag_train_auto.json')
pos_test = self.read_pos('resource/postag_test_auto.json')
encoded_train = self.get_encoded_pos(pos_train)
encoded_test = self.get_encoded_pos(pos_test)
x_train = self.__concatenate(x_train, encoded_train)
x_test = self.__concatenate(x_test, encoded_test)
if self.dependency:
json_train = self.__load_json('resource/dependency_train_auto.json')
json_test = self.__load_json('resource/dependency_train_auto.json')
encoded_train = self.get_encoded_term(json_train)
encoded_test = self.get_encoded_term(json_test)
x_train = self.__concatenate(x_train, encoded_train)
x_test = self.__concatenate(x_test, encoded_test)
return x_train, y_train, x_test, y_test