-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdata_loader.py
125 lines (106 loc) · 4.05 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# coding=utf-8
import json
import torch
import numpy as np
from torch.utils.data import DataLoader, Dataset
class ListDataset(Dataset):
def __init__(self, file_path=None, data=None, tokenizer=None, max_len=None, **kwargs):
self.kwargs = kwargs
if isinstance(file_path, (str, list)):
self.data = self.load_data(file_path)
elif isinstance(data, list):
self.data = data
else:
raise ValueError('The input args shall be str format file_path / list format dataset')
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
@staticmethod
def load_data(file_path):
return file_path
# 加载数据集
class CNEWSDataset(ListDataset):
@staticmethod
def load_data(filename):
data = []
with open(filename, encoding='utf-8') as f:
raw_data = f.readlines()
for d in raw_data:
d = d.strip().split('\t')
text = d[1]
label = d[0]
data.append((text, label))
return data
class CPWSDataset(ListDataset):
@staticmethod
def load_data(filename):
data = []
with open(filename, encoding='utf-8') as f:
raw_data = f.readlines()
for d in raw_data:
d = d.strip()
d = d.split("\t")
if len(d) == 2:
data.append((d[1], d[0]))
return data
class Collate:
def __init__(self, tokenizer, max_len, tag2id):
self.tokenizer = tokenizer
self.maxlen = max_len
self.tag2id = tag2id
def collate_fn(self, batch):
batch_labels = []
batch_token_ids = []
batch_attention_mask = []
batch_token_type_ids = []
for i, (text, label) in enumerate(batch):
output = self.tokenizer.encode_plus(
text=text,
max_length=self.maxlen,
padding="max_length",
truncation='longest_first',
return_token_type_ids=True,
return_attention_mask=True
)
token_ids = output["input_ids"]
token_type_ids = output["token_type_ids"]
attention_mask = output["attention_mask"]
batch_token_ids.append(token_ids) # 前面已经限制了长度
batch_attention_mask.append(attention_mask)
batch_token_type_ids.append(token_type_ids)
batch_labels.append(self.tag2id[label])
batch_token_ids = torch.tensor(batch_token_ids, dtype=torch.long)
attention_mask = torch.tensor(batch_attention_mask, dtype=torch.long)
token_type_ids = torch.tensor(batch_token_type_ids, dtype=torch.long)
batch_labels = torch.tensor(batch_labels, dtype=torch.long)
batch_data = {
"token_ids":batch_token_ids,
"attention_masks":attention_mask,
"token_type_ids":token_type_ids,
"labels":batch_labels
}
return batch_data
if __name__ == "__main__":
from transformers import BertTokenizer
max_len = 512
tokenizer = BertTokenizer.from_pretrained('../model_hub/chinese-bert-wwm-ext')
train_dataset = CNEWSDataset(file_path='data/cnews/cnews.train.txt')
print(train_dataset[0])
with open('data/cnews/labels.txt', 'r', encoding="utf-8") as fp:
labels = fp.read().strip().split("\n")
id2tag = {}
tag2id = {}
for i, label in enumerate(labels):
id2tag[i] = label
tag2id[label] = i
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
collate = Collate(tokenizer=tokenizer, max_len=max_len, tag2id=tag2id, device=device)
batch_size = 2
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False, collate_fn=collate.collate_fn)
for i, batch in enumerate(train_dataloader):
print(batch["token_ids"].shape)
print(batch["attention_masks"].shape)
print(batch["token_type_ids"].shape)
print(batch["labels"].shape)
break