-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_lora.py
299 lines (232 loc) · 11.5 KB
/
train_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# -*- coding: utf-8 -*-
# @Time : 2023/7/3 18:29
# @Author : supinyu
# @File : train_lora.py
from loguru import logger
import os
import torch
from datasets import load_dataset
from peft import LoraConfig, get_peft_model, TaskType
from transformers import HfArgumentParser, set_seed, AutoConfig, AutoTokenizer, AutoModel, DataCollatorForSeq2Seq, \
Trainer, AutoModelForCausalLM
from arguments import ModelArguments, DataTrainingArguments, FineTuneArguments
IGNORE_INDEX = -100
class ModifiedTrainer(Trainer):
def _save(self, output_dir=None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
def save_tunable_parameters(model, path):
saved_params = {
k: v.to("cpu") for k, v in model.named_parameters() if v.requires_grad
}
# saved_params = model.state_dict()
torch.save(saved_params, path)
save_tunable_parameters(
self.model, os.path.join(output_dir, "chatglm-lora.pt")
)
self.model.save_pretrained(output_dir)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FineTuneArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
logger.add(os.path.join(training_args.output_dir, 'train.log'))
logger.info("train_args:{}".format(training_args))
# Set seed before initializing model.
set_seed(training_args.seed)
model_name = model_args.model_name_or_path.split("/")[-1]
logger.info("train model name is {}".format(model_name))
# Load dataset
data_files = {}
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
prefix = "假设你是一个小学数学老师,请你解决下面的题目:"
# Load pretrained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
if model_name == "baichuan-7B" or model_name == "Baichuan-13B-Chat":
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, trust_remote_code=True,
device_map="auto", torch_dtype=torch_dtype)
else:
model = AutoModel.from_pretrained(model_args.model_name_or_path, trust_remote_code=True, device_map="auto")
target_model_dict = {
"chatglm2-6b": ["query_key_value"],
"chatglm-6b": ["query_key_value"],
"baichuan-7B": ["W_pack", "o_proj"],
"Baichuan-13B-Chat": ["W_pack", "o_proj"]
}
if model_name == "baichuan-7B":
tokenizer.pad_token_id = 0
if model_name == "Baichuan-13B-Chat":
# model.supports_gradient_checkpointing = True #节约cuda
# model.gradient_checkpointing_enable()
model.enable_input_require_grads()
config = LoraConfig(r=training_args.lora_rank,
lora_alpha=32,
target_modules=target_model_dict[model_name],
lora_dropout=0.1,
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
bias="none"
)
model = get_peft_model(model, config)
# model = model.half()
model.print_trainable_parameters()
# Get the column names for input/target.
prompt_column = data_args.prompt_column
response_column = data_args.response_column
history_column = data_args.history_column
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
def preprocess_function_train_v1(examples):
max_seq_length = data_args.max_source_length + data_args.max_target_length
model_inputs = {
"input_ids": [],
"labels": [],
}
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] and examples[response_column][i]:
query, answer = examples[prompt_column][i], examples[response_column][i]
if history_column is None:
prompt = query
else:
prompt = ""
history = examples[history_column][i]
for turn_idx, (old_query, response) in enumerate(history):
prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
prompt = prefix + prompt
a_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
b_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(a_ids) > data_args.max_source_length - 1:
a_ids = a_ids[: data_args.max_source_length - 1]
if len(b_ids) > data_args.max_target_length - 2:
b_ids = b_ids[: data_args.max_target_length - 2]
input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)
context_length = input_ids.index(tokenizer.bos_token_id)
mask_position = context_length - 1
labels = [-100] * context_length + input_ids[mask_position + 1:]
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
labels = labels + [tokenizer.pad_token_id] * pad_len
if data_args.ignore_pad_token_for_loss:
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_function_train_v2(examples):
max_seq_length = data_args.max_source_length + data_args.max_target_length + 1
model_inputs = {
"input_ids": [],
"labels": [],
}
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] and examples[response_column][i]:
query, answer = examples[prompt_column][i], examples[response_column][i]
history = examples[history_column][i] if history_column is not None else None
prompt = tokenizer.build_prompt(query, history)
prompt = prefix + prompt
a_ids = tokenizer.encode(text=prompt, add_special_tokens=True, truncation=True,
max_length=data_args.max_source_length)
b_ids = tokenizer.encode(text=answer, add_special_tokens=False, truncation=True,
max_length=data_args.max_target_length)
context_length = len(a_ids)
input_ids = a_ids + b_ids + [tokenizer.eos_token_id]
labels = [tokenizer.pad_token_id] * context_length + b_ids + [tokenizer.eos_token_id]
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
labels = labels + [tokenizer.pad_token_id] * pad_len
if data_args.ignore_pad_token_for_loss:
labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
def preprocess_function_train_bai_chuan(examples):
max_seq_length = data_args.max_source_length + data_args.max_target_length
model_inputs = {
"input_ids": [],
"labels": [],
}
for i in range(len(examples[prompt_column])):
if examples[prompt_column][i] and examples[response_column][i]:
query, answer = examples[prompt_column][i], examples[response_column][i]
query = prefix + query
a_ids = tokenizer.encode(text=query, add_special_tokens=False)
b_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(a_ids) > data_args.max_source_length:
a_ids = a_ids[: data_args.max_source_length]
if len(b_ids) > data_args.max_target_length - 2:
b_ids = b_ids[: data_args.max_target_length - 2]
input_ids = a_ids + [tokenizer.bos_token_id] + b_ids + [tokenizer.eos_token_id]
context_length = len(a_ids) + 1
labels = [IGNORE_INDEX] * context_length + b_ids + [tokenizer.eos_token_id]
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
labels = labels + [IGNORE_INDEX] * pad_len
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
return model_inputs
train_data_process_dict = {
"chatglm2-6b": preprocess_function_train_v2,
"chatglm-6b": preprocess_function_train_v1,
"baichuan-7B": preprocess_function_train_bai_chuan,
"Baichuan-13B-Chat": preprocess_function_train_bai_chuan
}
def print_dataset_example(example):
print(example["input_ids"])
print(example["labels"])
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples)).shuffle()
column_names = train_dataset.column_names
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
train_data_process_dict[model_name],
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
print_dataset_example(train_dataset[0])
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=None,
padding=False
)
# Initialize our Trainer
trainer = ModifiedTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
data_collator=data_collator
)
train_result = trainer.train()
model.save_pretrained(training_args.output_dir)
trainer.save_state()
if __name__ == "__main__":
main()