-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
190 lines (152 loc) · 5.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import pandas as pd
from collections import Counter
import keras_metrics
import numpy as np
import nltk
from nltk.corpus import stopwords
import os
import re
import sys
import unicodedata
from tqdm import tqdm
import gensim
import string
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from keras.preprocessing.text import Tokenizer
from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding, Bidirectional
from keras.optimizers import RMSprop
from keras.models import Model
def punc(sentences):
# import ipdb; ipdb.set_trace()
new_sentences=[]
exclude = list(set(string.punctuation))
exclude.extend(["’", "‘"])
for sentence in tqdm(sentences):
s = ''.join(ch for ch in sentence if ch not in exclude)
new_sentences.append(s)
return new_sentences
def tokenize(sentences):
tokens=[]
unique_tokens=[]
for sentence in sentences:
sentence=nltk.word_tokenize(sentence)
tokens.append(sentence)
unique_tokens.extend(sentence)
return tokens, unique_tokens
def read_data(filename):
cls=[]
text=[]
with open(os.path.join('data', filename+'.txt'), 'r') as f:
for line in f:
cls.append(line.split('||')[0])
text.append(line.split('||')[1])
return cls, text
def RNN():
max_len=15
max_words=20000
inputs = Input(name='inputs',shape=[max_len])
layer = Embedding(max_words, 150,input_length=max_len)(inputs)
layer = Bidirectional(LSTM(64, return_sequences=True))(layer)
layer = Bidirectional(LSTM(64))(layer)
layer = Dense(512,name='FC1')(layer)
layer = Activation('relu')(layer)
layer = Dense(128,name='FC2')(layer)
layer = Activation('relu')(layer)
# layer = Dropout(0.2)(layer)
layer = Dense(5,name='out_layer')(layer)
layer = Activation('softmax')(layer)
model = Model(inputs=inputs,outputs=layer)
return model
def remove_common(sentences, unique_tokens, top):
# import ipdb; ipdb.set_trace()
new_sentences=[]
common=Counter(unique_tokens).most_common(top)
common=list(list(zip(*common))[0])
print(common)
for sentence in tqdm(sentences):
words=[word for word in sentence if word not in common]
new_sentences.append(words)
return new_sentences
def split(df):
cols=df.cls.drop_duplicates().values
from sklearn.model_selection import train_test_split
import sklearn
train=pd.DataFrame()
test=pd.DataFrame()
for col in cols:
split_df=df[df.cls == col]
train_df, test_df= train_test_split(split_df, test_size=0.2)
train=[train, train_df]
test=[test, test_df]
train=pd.concat(train)
test=pd.concat(test)
return sklearn.utils.shuffle(train), sklearn.utils.shuffle(test)
def main():
# import ipdb; ipdb.set_trace()
cls, text=read_data('classification')
yo=read_data('anandabazar_classification')
cls.extend(yo[0])
text.extend(yo[1])
yo=read_data('ebala_classification')
cls.extend(yo[0])
text.extend(yo[1])
# import ipdb; ipdb.set_trace()
yo=list(set(zip(cls, text)))
df=pd.DataFrame(yo, columns=['cls', 'text'])
df=df.replace(['international', 'sport', 'nation'], ['world', 'sports', 'national'])
df=df[df.cls!='travel']
df=df[df.cls!='world']
print(Counter(df.cls.values))
train_df, test_df=split(df)
train_comments=train_df.text.values
train_labels=train_df.cls.values
train_comments=punc(train_comments)
# comments=remove_stopwords(comments)
train_comments, unique_tokens=tokenize(train_comments)
train_comments=remove_common(train_comments, unique_tokens, 20)
test_comments=test_df.text.values
test_labels=test_df.cls.values
test_comments=punc(test_comments)
# comments=remove_stopwords(comments)
test_comments, _ =tokenize(test_comments)
test_comments=remove_common(test_comments, unique_tokens, 20)
print(f"Most Common Words: {Counter(unique_tokens).most_common(10)}")
print(f"{len(list(zip(unique_tokens)))}")
# print(comments[:5])
max_words = 20000
max_len = 15
tok = Tokenizer(num_words=max_words)
tok.fit_on_texts(train_comments)
sequences = tok.texts_to_sequences(train_comments)
test_sequences=tok.texts_to_sequences(test_comments)
print(sequences[0])
sequences_matrix = sequence.pad_sequences(sequences, maxlen=max_len)
test_sequences_matrix = sequence.pad_sequences(test_sequences, maxlen=max_len)
print(test_sequences_matrix[0])
train_labels = pd.Series(train_labels).str.get_dummies()
test_labels=pd.Series(test_labels).str.get_dummies()
train_labels=np.asarray(train_labels)
test_labels=np.asarray(test_labels)
import pickle
with open('tok.pkl', 'wb') as f:
pickle.dump(tok, f, pickle.HIGHEST_PROTOCOL)
model = RNN()
model.summary()
model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy', keras_metrics.precision(), keras_metrics.recall()])
filepath=f'model.hdf5'
callback=keras.callbacks.ModelCheckpoint(filepath, monitor='acc', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)
model_hist=model.fit(sequences_matrix,train_labels, validation_data=(test_sequences_matrix, test_labels), batch_size=128, epochs=10, shuffle=True, callbacks=[callback])
model.save('models/model1.h5')
precision = model_hist.history['precision'][0]
recall = model_hist.history['recall'][0]
f_score = (2.0 * precision * recall) / (precision + recall)
print('F1-SCORE {}'.format(f_score))
model.evaluate(test_sequences_matrix, test_labels, verbose=0)
if __name__ == "__main__":
main()