-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSample_Graph.java
286 lines (250 loc) · 9.52 KB
/
Sample_Graph.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import java.util.*;
import javafx.util.Pair;
/**
* Created by sachin on 12/14/2017.
*/
class Nodes
{
char name;
int cost;//needed for cost based questions
Vector<Nodes> adjacent= new Vector<>();
//int more=0;//initially more=0 , when more=1 first traversed,,if no more adjacent then more=2
Nodes(char name)
{
this.name=name;
}
Nodes(char name,int cost)
{
this.name=name;
this.cost=cost;
}
}
public class Sample_Graph {
int size;
Vector<Nodes> vertices;
Sample_Graph(int size)
{
this.size=size;
vertices = new Vector<>(size);
for (int i = 0; i <size ; i++) {
vertices.add(i,new Nodes((char) (65+i)));
}
}
public void addEdge(int i, int j) {
vertices.get(i-1).adjacent.add(new Nodes((char) (65+j-1)));
}
public void addEdge(int main, int adjacent, int cost) {//edges with weight
vertices.get(main-1).adjacent.add(new Nodes((char) (65+adjacent-1),cost));
}
public void print_Graph() {
for (int i = 0; i <size ; i++) {
System.out.print("Vertice is " + vertices.get(i).name+" its adjacent are ");
for (int j = 0; j < vertices.get(i).adjacent.size() ; j++) {
System.out.print(vertices.get(i).adjacent.get(j).name);
}
System.out.println();
}
}
public void dfs() {//considering no cycles
Stack<Nodes> store=new Stack<>();
//putting first stat element in the stack
HashSet<Character>values= new HashSet<>();//used for avoiding duplicacy of character on stack
HashSet<Character>print=new HashSet<>();
store.push(vertices.get(0));
while(!store.empty())
{
Nodes dfs=store.pop();
if (!print.contains(dfs.name))
print.add(dfs.name);
else {
System.out.println("loop_cycle_detected");
}
System.out.println(dfs.name);
Nodes traverse=vertices.get((int)dfs.name -65);
for (int i = 0; i <traverse.adjacent.size() ; i++) {
if(!values.contains(traverse.adjacent.get(i).name))//unvisited
{store.push(traverse.adjacent.get(i));
values.add(traverse.adjacent.get(i).name);
}
}
}
}
public void topologySort_indegree_kahnsmethod() {
LinkedHashMap<Character,Integer>indegree=new LinkedHashMap<>();
for (int i = 0; i <size ; i++) {
indegree.put(vertices.get(i).name,0);
}
for (int i = 0; i <vertices.size() ; i++) {
for (int j = 0; j <vertices.get(i).adjacent.size() ; j++) {
Character c=vertices.get(i).adjacent.get(j).name;
if(indegree.containsKey(c))
{
indegree.put(c,indegree.get(c)+1);
}
}
}
// indegree.values().forEach(System.out::println);
Queue<Character>temp=new ArrayDeque<>();
for (int i = 0; i <size ; i++) {
Character n=vertices.get(i).name;
if(indegree.get(n)==0)
{
temp.add(n);
}
}
System.out.println(temp.size());
while (!temp.isEmpty())
{
Character c=temp.poll();
System.out.println(c);
Nodes traverse=vertices.get((int)c -65);
for (int i = 0; i <traverse.adjacent.size() ; i++) {
Character t=traverse.adjacent.get(i).name;
int val=indegree.get(t);
indegree.replace(t,val,val-1);
if(indegree.get(t)==0)
temp.add(t);
}
}
}
public boolean hasCycle() {
//dfs with 1 condition of checking whether forward traversal leads to the same node visited
Stack<Nodes> store=new Stack<>();
//putting first stat element in the stack
HashSet<Character>values= new HashSet<>();//used for avoiding duplicacy of character on stack
HashSet<Character>print=new HashSet<>();
store.push(vertices.get(0));
while(!store.empty())
{
Nodes dfs=store.pop();
if (!print.contains(dfs.name))
print.add(dfs.name);
else {
System.out.println("loop_cycle_detected");
return true;
}
// System.out.println(dfs.name);
Nodes traverse=vertices.get((int)dfs.name -65);
for (int i = 0; i <traverse.adjacent.size() ; i++) {
if(!values.contains(traverse.adjacent.get(i).name))//unvisited
{store.push(traverse.adjacent.get(i));
values.add(traverse.adjacent.get(i).name);
}
}
}
return false;
}
public void dijkshtra_short_path() {
//initially put start vertex in queue
ArrayList<Character> d=new ArrayList<Character>();
LinkedHashMap<Character,Integer>map=new LinkedHashMap<>();
//initilaize with high value
map.put('A',0);
for (int i = 1; i <size ; i++) {
map.put((char) ( 65+i),Integer.MAX_VALUE);
}
d.add(vertices.get(0).name);
while (!d.isEmpty())
{
Character c=d.remove(0);
Nodes n=vertices.get((int)c-65);
for (int i = 0; i <n.adjacent.size() ; i++) {
Character x=n.adjacent.get(i).name;
d.add(x);
int weight=n.adjacent.get(i).cost;
int new_distance=map.get(c)+weight;
if(new_distance < map.get(x))
{
map.replace(x,new_distance);
}
}
}
for (Character k:map.keySet()
) {
System.out.println(k+"\t"+map.get(k));
}
}
public void find_MST() {
//here we need tree so we need to know pointer to parent for traversing other than map
ArrayList<Character>tree=new ArrayList<>();//make tree nodes=verices of graph
for (int i = 0; i < size; i++) {
tree.add((char) ('A'+i));
}
ArrayList<Character>d=new ArrayList<>();
LinkedHashMap<Character,Pair<Integer,Character>>map=new LinkedHashMap<>();
//here pair represents distance and parent to node
//put first node in arralist acting as queue
d.add(vertices.get(0).name);
map.put('A',new Pair<>(0,tree.get(0)));
for (int i = 1; i < size; i++) {
map.put((char) ('A'+i),new Pair<>(Integer.MAX_VALUE,null));
}
while (!d.isEmpty())
{
Character c=d.remove(0);
Nodes n=vertices.get((int)c-65);
for (int i = 0; i <n.adjacent.size() ; i++) {
Character x=n.adjacent.get(i).name;
d.add(x);
int weight=n.adjacent.get(i).cost;
int new_distance=map.get(c).getKey() +weight;
if(new_distance<map.get(x).getKey())
{
map.replace(x,new Pair<>(new_distance,vertices.get((int)c-65).name));
}
}
}
System.out.println("representing vertices,cost from that single source to a vertex , parent to that node");
for (Character k:map.keySet()
) {
System.out.println(k+"\t"+map.get(k).getKey()+"\t"+map.get(k).getValue());
}
//printing spanning tree edges
System.out.println("edges of graph in min spanning tree");
for (int i = 1; i <size ; i++) {
System.out.println(map.get(vertices.get(i).name).getValue() + "---" + vertices.get(i).name);
}
}
public void all_pair_short_path() {
int all_shortest_path[][]=new int[size][size];
for (int i = 0; i <size ; i++) {
//initially put start vertex in queue
ArrayList<Character> d=new ArrayList<Character>();
LinkedHashMap<Character,Integer>map=new LinkedHashMap<>();
//initilaize with high value
for (int j = 0; j <size ; j++) {
map.put((char) ( 65+j),Integer.MAX_VALUE);
}
map.replace((char) (65+i),Integer.MAX_VALUE,0);
d.add(vertices.get(i).name);
while (!d.isEmpty())
{
Character c=d.remove(0);
Nodes n=vertices.get((int)c-65);
for (int j = 0; j <n.adjacent.size() ; j++) {
Character x=n.adjacent.get(j).name;
d.add(x);
int weight=n.adjacent.get(j).cost;
int new_distance=map.get(c)+weight;
if(new_distance < map.get(x))
{
map.replace(x,new_distance);
}
}
}
for (Character k:map.keySet()
) {
System.out.println(k+"\t"+map.get(k));
}
for (int j = 0; j <size ; j++) {
all_shortest_path[i][j]=map.get((char)(j+65));
}
}
for (int i = 0; i <size ; i++) {
for (int j = 0; j <size ; j++) {
System.out.print(all_shortest_path[i][j]+"\t\t");
}
System.out.println();
}
}
}