-
Notifications
You must be signed in to change notification settings - Fork 53
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
circuit.angles() seems incorrect #97
Comments
Hi @wangzbo thank you for reporting this. I am trying to find what is wrong, but I am getting results which looks good to me. Please see this: import numpy as np
def partial_trace(rho, dims, traced_out):
"""
Compute the partial trace of a density matrix.
:param rho: Density matrix (numpy array)
:param dims: List of subsystem dimensions (e.g., [2, 2] for 2 qubits)
:param traced_out: Index of the qubit to trace out (0 or 1)
:return: Reduced density matrix after tracing out the specified qubit
"""
dimA, dimB = dims
reshaped_rho = rho.reshape(dimA, dimB, dimA, dimB)
if traced_out == 0:
reduced_rho = np.trace(reshaped_rho, axis1=0, axis2=2)
elif traced_out == 1:
reduced_rho = np.trace(reshaped_rho, axis1=1, axis2=3)
else:
raise ValueError("Invalid qubit index to trace out")
return reduced_rho
def bloch_sphere_angles(rho):
"""
Compute Bloch sphere angles (theta, phi) and radius from a single-qubit density matrix.
:param rho: 2x2 density matrix
:return: (theta, phi, radius) for Bloch sphere representation
"""
pauli_matrices = [
np.array([[0, 1], [1, 0]]), # sigma_x
np.array([[0, -1j], [1j, 0]]), # sigma_y
np.array([[1, 0], [0, -1]]) # sigma_z
]
# Compute the Bloch vector components
bloch_vector = np.array([np.trace(rho @ sigma).real for sigma in pauli_matrices])
# Calculate theta and phi
theta = np.arccos(bloch_vector[2]) # cos(theta) = z-component
phi = np.arctan2(bloch_vector[1], bloch_vector[0]) # atan2(y, x)
# Calculate the radius (magnitude of the Bloch vector)
radius = np.linalg.norm(bloch_vector)
return theta, phi, radius
# Define the state vector
state_vector = np.array([ 0.25+0.60355339059327j, -0.10355339059327-0.25j, 0.25+0.60355339059327j, 0.10355339059327+0.25j ])
# Calculate the density matrix
density_matrix = np.outer(state_vector, np.conj(state_vector))
reduced_density_matrix_0 = partial_trace(density_matrix, [2, 2], traced_out=0)
reduced_density_matrix_1 = partial_trace(density_matrix, [2, 2], traced_out=1)
# Print the results
print("Density Matrix:")
print(repr(density_matrix))
print("\n*** Qubit 0 ***")
print("\nReduced Density Matrix:\n")
print(repr(reduced_density_matrix_0))
theta_0, phi_0, radius_0 = bloch_sphere_angles(reduced_density_matrix_0)
print("\nBloch sphere angles:\n")
print(f"Theta: {theta_0}, Phi: {phi_0}, Radius: {radius_0}")
print("\n*** Qubit 1 ***")
print("\nReduced Density Matrix:\n")
print(repr(reduced_density_matrix_1))
theta_1, phi_1, radius_1 = bloch_sphere_angles(reduced_density_matrix_1)
print("\nBloch sphere angles:\n")
print(f"Theta: {theta_1}, Phi: {phi_1}, Radius: {radius_1}") Prints:
OR with Qiskit: import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.quantum_info import Statevector, DensityMatrix, partial_trace, Pauli
qc = QuantumCircuit()
q = QuantumRegister(2, 'q')
c = ClassicalRegister(2, 'c')
qc.add_register(q)
qc.add_register(c)
qc.h(q[0])
qc.h(q[1])
qc.s(q[0])
qc.t(q[1])
qc.cx(q[0], q[1])
qc.sx(q[0])
# Get the statevector of the circuit
state = Statevector.from_instruction(qc)
# Convert to density matrix
density_matrix = DensityMatrix(state)
reduced_density_matrix_0 = np.round(partial_trace(density_matrix, [1]).data, 15)
reduced_density_matrix_1 = np.round(partial_trace(density_matrix, [0]).data, 15)
r_x_0 = np.real(reduced_density_matrix_0[0, 1] + reduced_density_matrix_0[1, 0])
r_y_0 = np.imag(reduced_density_matrix_0[0, 1] - reduced_density_matrix_0[1, 0])
r_z_0 = np.real(reduced_density_matrix_0[0, 0] - reduced_density_matrix_0[1, 1])
# Calculate the radius, theta, and phi
radius_0 = np.sqrt(r_x_0**2 + r_y_0**2 + r_z_0**2)
theta_0 = np.arccos(r_z_0)
phi_0 = np.arctan2(r_y_0, r_x_0)
r_x_1 = np.real(reduced_density_matrix_1[0, 1] + reduced_density_matrix_1[1, 0])
r_y_1 = np.imag(reduced_density_matrix_1[0, 1] - reduced_density_matrix_1[1, 0])
r_z_1 = np.real(reduced_density_matrix_1[0, 0] - reduced_density_matrix_1[1, 1])
# Calculate the radius, theta, and phi
radius_1 = np.sqrt(r_x_1**2 + r_y_1**2 + r_z_1**2)
theta_1 = np.arccos(r_z_1)
phi_1 = np.arctan2(r_y_1, r_x_1)
# Print the results
print("Density Matrix:")
print(repr(density_matrix))
print("\n*** Qubit 0 ***")
print("\nReduced Density Matrix:\n")
print(repr(reduced_density_matrix_0))
print("\nBloch sphere angles:\n")
print(f"Theta: {theta_0}, Phi: {phi_0}, Radius: {radius_0}")
print("\n*** Qubit 1 ***")
print("\nReduced Density Matrix:\n")
print(repr(reduced_density_matrix_1))
print("\nBloch sphere angles:\n")
print(f"Theta: {theta_1}, Phi: {phi_1}, Radius: {radius_1}") Prints:
Now... it is possible that I am doing something wrong. Please give me more details on how you calculate density matrix, partial trace and angles. |
Hi @perak , thank you for your reply. I think all look correct but the step to compute the r, theta and phi. This is why we get different results for (r, theta, phi). |
It is easy to recreate. Here is the circuit description using openQASM:
I call circuit.angles() and it returns "theta: 0.785398163399, phi: 0, thetaDeg: 45, phiDeg: 0, radius: 0.7071068" for q[0]. The partial trace of q[0] is diag((2+√2)/4, (2-√2)/4), so the correct angle of q[0] should be "theta: 0, phi: 0, thetaDeg: 0, phiDeg: 0, radius: 0.7071068"?
The text was updated successfully, but these errors were encountered: