-
Notifications
You must be signed in to change notification settings - Fork 129
/
Copy pathrenderer.js
executable file
·354 lines (289 loc) · 9.59 KB
/
renderer.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
let
options = {antialias: false},
gl = (c.getContext('webgl', options) || c.getContext('experimental-webgl', options)),
R_MAX_VERTS = 1024 * 64, // allow 512k verts max
R_MAX_LIGHT_V3 = 64,
// Vertex shader source. This translates the model position & rotation and also
// mixes positions of two buffers for animations.
R_SOURCE_VS =
'precision highp float;' +
// Vertex positions, normals and uv coords for the fragment shader
'varying vec3 vp,vn;' +
'varying vec2 vt;' +
// Input vertex positions & normals and blend vertex positions & normals
'attribute vec3 p,n,p2,n2;' +
// Input UV coords
'attribute vec2 t;' +
// Camera position (x, y, z) and aspect ratio (w)
'uniform vec4 c;' +
// Model position (x, y, z)
'uniform vec3 mp;' +
// Model rotation (yaw, pitch)
'uniform vec2 mr;' +
// Mouse rotation yaw (x), pitch (y)
'uniform vec2 m;' +
// Blend factor between the two vertex positions
'uniform float f;' +
// Generate a rotation Matrix around the x,y,z axis;
// Used for model rotation and camera yaw
'mat4 rx(float r){' +
'return mat4(' +
'1,0,0,0,' +
'0,cos(r),sin(r),0,' +
'0,-sin(r),cos(r),0,' +
'0,0,0,1' +
');' +
'}' +
'mat4 ry(float r){' +
'return mat4(' +
'cos(r),0,-sin(r),0,' +
'0,1,0,0,' +
'sin(r),0,cos(r),0,' +
'0,0,0,1' +
');' +
'}' +
'mat4 rz(float r){' +
'return mat4(' +
'cos(r),sin(r),0,0,' +
'-sin(r),cos(r),0,0,' +
'0,0,1,0,' +
'0,0,0,1' +
');' +
'}' +
'void main(void){' +
// Rotation Matrixes for model rotation
'mat4 '+
'mry=ry(mr.x),' +
'mrz=rz(mr.y);' +
// Mix vertex positions, rotate and add the model position
'vp=(mry*mrz*vec4(mix(p,p2,f),1.)).xyz+mp;' +
// Mix normals
'vn=(mry*mrz*vec4(mix(n,n2,f),1.)).xyz;' +
// UV coords are handed over to the fragment shader as is
'vt=t;' +
// Final vertex position is transformed by the projection matrix,
// rotated around mouse yaw/pitch and offset by the camera position
// We use a FOV of 90, so the matrix[0] and [5] are conveniently 1.
// (1 / Math.tan((90/180) * Math.PI / 2) === 1)
'gl_Position=' +
'mat4(' +
'1,0,0,0,' +
'0,c.w,0,0,' +
'0,0,1,1,' +
'0,0,-2,0' +
')*' + // projection
'rx(-m.y)*ry(-m.x)*' +
'vec4(vp-c.xyz,1.);' +
'}',
// Fragment shader source. Calculates the lighting, does some cheesy gamma
// correction and reduces the colors of the final output.
R_SOURCE_FS =
'precision highp float;' +
// Vertex positions, normals and uv coords
'varying vec3 vp,vn;' +
'varying vec2 vt;' +
'uniform sampler2D s;' +
// Lights [(x,y,z), [r,g,b], ...]
'uniform vec3 l['+R_MAX_LIGHT_V3+'];' +
'void main(void){' +
'gl_FragColor=texture2D(s,vt);' +
// Debug: no textures
// 'gl_FragColor=vec4(1.0,1.0,1.0,1.0);' +
// Calculate all lights
'vec3 vl;' +
'for(int i=0;i<'+R_MAX_LIGHT_V3+';i+=2) {' +
'vl+=' +
// Angle to normal
'max('+
'dot('+
'vn, normalize(l[i]-vp)' +
')' +
',0.)*' +
'(1./pow(length(l[i]-vp),2.))' + // Inverse distance squared
'*l[i+1];' + // Light color/intensity
'}' +
// Debug: full bright lights
// 'vl = vec3(2,2,2);' +
'gl_FragColor.rgb=floor('+
'gl_FragColor.rgb*pow(vl,vec3(0.75))'+ // Light, Gamma
'*16.0+0.5'+
')/16.0;' + // Reduce final output color for some extra dirty looks
'}',
// 8 properties per vert [x,y,z, u,v, nx,ny,nz]
r_buffer = new Float32Array(R_MAX_VERTS*8),
r_num_verts = 0,
// 2 vec3 per light [(x,y,z), [r,g,b], ...]
r_light_buffer = new Float32Array(R_MAX_LIGHT_V3*3),
r_num_lights = 0,
// Uniform locations
r_u_camera,
r_u_lights,
r_u_mouse,
r_u_pos,
r_u_rotation,
r_u_frame_mix,
// Vertex attribute location for mixing
r_va_p2, r_va_n2,
// Texture handles
r_textures = [],
// Camera position
r_camera = vec3(0, 0,-50),
r_camera_pitch = 0.2,
r_camera_yaw = 0,
// We collect all draw calls in an array and draw them all at once at the end
// the frame. This way the lights buffer will be completely filled and we
// only need to set it once for all geometry
r_draw_calls = [],
r_init = () => {
// Create shorthand WebGL function names
// let webglShortFunctionNames = {};
for (let name in gl) {
if (gl[name].length != undefined) {
gl[name.match(/(^..|[A-Z]|\d.|v$)/g).join('')] = gl[name];
// webglShortFunctionNames[name] = 'gl.' +name.match(/(^..|[A-Z]|\d.|v$)/g).join('');
}
}
// console.log(JSON.stringify(webglShortFunctionNames, null, '\t'));
let shader_program = gl.createProgram();
gl.attachShader(shader_program, r_compile_shader(gl.VERTEX_SHADER, R_SOURCE_VS));
gl.attachShader(shader_program, r_compile_shader(gl.FRAGMENT_SHADER, R_SOURCE_FS));
gl.linkProgram(shader_program);
gl.useProgram(shader_program);
r_u_camera = gl.getUniformLocation(shader_program, 'c');
r_u_lights = gl.getUniformLocation(shader_program, 'l');
r_u_mouse = gl.getUniformLocation(shader_program, 'm');
r_u_pos = gl.getUniformLocation(shader_program, 'mp');
r_u_rotation = gl.getUniformLocation(shader_program, 'mr');
r_u_frame_mix = gl.getUniformLocation(shader_program, 'f');
gl.bindBuffer(gl.ARRAY_BUFFER, gl.createBuffer());
r_vertex_attrib(shader_program, 'p', 3, 8, 0); // position
r_vertex_attrib(shader_program, 't', 2, 8, 3); // texture coord
r_vertex_attrib(shader_program, 'n', 3, 8, 5); // normals
r_va_p2 = r_vertex_attrib(shader_program, 'p2', 3, 8, 0); // mix position
r_va_n2 = r_vertex_attrib(shader_program, 'n2', 3, 8, 5); // mix normals
gl.enable(gl.DEPTH_TEST);
gl.enable(gl.BLEND);
gl.enable(gl.CULL_FACE);
gl.viewport(0,0,c.width,c.height);
},
r_compile_shader = (shader_type, shader_source) => {
let shader = gl.createShader(shader_type);
gl.shaderSource(shader, shader_source);
gl.compileShader(shader);
// console.log(gl.getShaderInfoLog(shader));
return shader;
},
r_vertex_attrib = (shader_program, attrib_name, count, vertex_size, offset) => {
let location = gl.getAttribLocation(shader_program, attrib_name);
gl.enableVertexAttribArray(location);
gl.vertexAttribPointer(location, count, gl.FLOAT, false, vertex_size * 4, offset * 4);
return location;
},
r_create_texture = (c) => {
let t = {t:gl.createTexture(), c};
gl.bindTexture(gl.TEXTURE_2D, t.t);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE, c);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST_MIPMAP_NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT);
gl.generateMipmap(gl.TEXTURE_2D);
r_textures.push(t);
},
r_prepare_frame = (r,g,b) => {
gl.clearColor(r,g,b,1);
gl.clear(gl.COLOR_BUFFER_BIT|gl.DEPTH_BUFFER_BIT);
r_num_lights = 0;
r_light_buffer.fill(0);
},
r_end_frame = () => {
gl.uniform4f(r_u_camera, r_camera.x, r_camera.y, r_camera.z, 16/9);
gl.uniform2f(r_u_mouse, r_camera_yaw, r_camera_pitch);
gl.uniform3fv(r_u_lights, r_light_buffer);
let vo = 0,
last_texture = -1;
for (let c of r_draw_calls) {
// c = [x, y, z, yaw, pitch, texture, offset1, offset2, mix, length]
// Bind new texture only if it changed from the previous one. The map
// is sorted by texture indices, so this helps.
if (last_texture != c[5]) {
last_texture = c[5];
gl.bindTexture(gl.TEXTURE_2D, r_textures[last_texture].t);
}
gl.uniform3f(r_u_pos, c[0], c[1], c[2]);
gl.uniform2f(r_u_rotation, c[3], c[4]);
gl.uniform1f(r_u_frame_mix, c[8]);
// If we have two different frames, calculate the offset from the
// drawArrays call to the mix frame.
// Setting the vertexAttribPointer is quite expensive, so we only
// do this if we have to; i.e. for animated models.
if (vo != (c[7]-c[6])) {
vo = (c[7]-c[6]);
gl.vertexAttribPointer(r_va_p2, 3, gl.FLOAT, false, 8 * 4, vo*8*4);
gl.vertexAttribPointer(r_va_n2, 3, gl.FLOAT, false, 8 * 4, (vo*8+5)*4);
}
gl.drawArrays(gl.TRIANGLES, c[6], c[9]);
}
// Reset draw calls
r_draw_calls = [];
},
r_draw = (pos, yaw, pitch, texture, f1, f2, mix, num_verts) => {
r_draw_calls.push([
pos.x, pos.y, pos.z, yaw, pitch,
texture, f1, f2, mix, num_verts
]);
},
r_submit_buffer = () => {
gl.bufferData(gl.ARRAY_BUFFER, r_buffer.subarray(0, r_num_verts*8), gl.STATIC_DRAW);
},
r_push_vert = (pos, normal, u, v) => {
r_buffer.set([pos.x, pos.y, pos.z, u, v, normal.x, normal.y, normal.z], r_num_verts * 8);
r_num_verts++;
},
r_push_quad = (v0, v1, v2, v3, u, v) => {
let n = vec3_face_normal(v0, v1, v2);
r_push_vert(v0, n, u, 0);
r_push_vert(v1, n, 0, 0);
r_push_vert(v2, n, u, v);
r_push_vert(v3, n, 0, v);
r_push_vert(v2, n, u, v);
r_push_vert(v1, n, 0, 0);
},
r_push_block = (x, y, z, sx, sy, sz, texture) => {
let canvas = r_textures[texture].c,
index = r_num_verts,
tx = sx/canvas.width,
ty = sy/canvas.height,
tz = sz/canvas.width,
// top
v0 = vec3(x, y + sy, z),
v1 = vec3(x + sx, y + sy, z),
v2 = vec3(x, y + sy, z + sz),
v3 = vec3(x + sx, y + sy, z + sz),
// bottom
v4 = vec3(x, y, z + sz),
v5 = vec3(x + sx, y, z + sz),
v6 = vec3(x, y, z),
v7 = vec3(x + sx, y, z);
r_push_quad(v0, v1, v2, v3, tx, tz); // top
r_push_quad(v4, v5, v6, v7, tx, tz); // bottom
r_push_quad(v2, v3, v4, v5, tx, ty); // front
r_push_quad(v1, v0, v7, v6, tx, ty); // back
r_push_quad(v3, v1, v5, v7, tz, ty); // right
r_push_quad(v0, v2, v6, v4, tz, ty); // left
return index;
},
r_push_light = (pos, intensity, r, g, b) => {
// Calculate the distance to the light, fade it out between 768--1024
let fade = clamp(
scale(
vec3_dist(pos, r_camera),
768, 1024, 1, 0
),
0, 1
) * intensity * 10;
if (fade && r_num_lights < R_MAX_LIGHT_V3/2) {
r_light_buffer.set([pos.x, pos.y, pos.z, r*fade, g*fade, b*fade], r_num_lights*6);
r_num_lights++;
}
};