
1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.6.8

1.6.9

1.6.10

1.6.10.1

1.6.10.2

Table	of	Contents
Introduction

Read	Me

Introduction

Motivation

Core	Concepts

Three	Principles

Prior	Art

Learning	Resources

Ecosystem

Examples

Basics

Actions

Reducers

Store

Data	Flow

Usage	with	React

Example:	Todo	List

Advanced

Async	Actions

Async	Flow

Middleware

Usage	with	React	Router

Example:	Reddit	API

Next	Steps

Recipes

Configuring	Your	Store

Migrating	to	Redux

Using	Object	Spread	Operator

Reducing	Boilerplate

Server	Rendering

Writing	Tests

Computing	Derived	Data

Implementing	Undo	History

Isolating	Subapps

Structuring	Reducers

Prerequisite	Concepts

Basic	Reducer	Structure

1

1.6.10.3

1.6.10.4

1.6.10.5

1.6.10.6

1.6.10.7

1.6.10.8

1.6.10.9

1.6.10.10

1.6.10.11

1.6.11

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.7.9

1.7.10

1.7.11

1.8

1.9

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.11

1.12

1.13

Splitting	Reducer	Logic

Refactoring	Reducers	Example

Using	combineReducers

Beyond	combineReducers

Normalizing	State	Shape

Updating	Normalized	Data

Reusing	Reducer	Logic

Immutable	Update	Patterns

Initializing	State

Using	Immutable.JS	with	Redux

FAQ

General

Reducers

Organizing	State

Store	Setup

Actions

Immutable	Data

Code	Structure

Performance

Design	Decisions

React	Redux

Miscellaneous

Troubleshooting

Glossary

API	Reference

createStore

Store

combineReducers

applyMiddleware

bindActionCreators

compose

Change	Log

Patrons

Feedback

2

Table	of	Contents
Read	Me
Introduction

Motivation
Core	Concepts
Three	Principles
Prior	Art
Learning	Resources
Ecosystem
Examples

Basics
Actions
Reducers
Store
Data	Flow
Usage	with	React
Example:	Todo	List

Advanced
Async	Actions
Async	Flow
Middleware
Usage	with	React	Router
Example:	Reddit	API
Next	Steps

Recipes
Configuring	Your	Store
Migrating	to	Redux
Using	Object	Spread	Operator
Reducing	Boilerplate
Server	Rendering
Writing	Tests
Computing	Derived	Data
Implementing	Undo	History
Isolating	Subapps
Structuring	Reducers

Prerequisite	Concepts
Basic	Reducer	Structure
Splitting	Reducer	Logic
Refactoring	Reducers	Example
Using		combineReducers	
Beyond		combineReducers	
Normalizing	State	Shape
Updating	Normalized	Data
Reusing	Reducer	Logic
Immutable	Update	Patterns
Initializing	State

Using	Immutable.JS	with	Redux
FAQ

Introduction

3

General
Reducers
Organizing	State
Store	Setup
Actions
Immutable	Data
Code	Structure
Performance
Design	Decisions
React	Redux
Miscellaneous

Troubleshooting
Glossary
API	Reference

createStore
Store
combineReducers
applyMiddleware
bindActionCreators
compose

Change	Log
Patrons
Feedback

Introduction

4

Read	Me

Redux	is	a	predictable	state	container	for	JavaScript	apps.
(Not	to	be	confused	with	a	WordPress	framework	–	Redux	Framework.)

It	helps	you	write	applications	that	behave	consistently,	run	in	different	environments	(client,	server,	and	native),	and	are	easy	to
test.	On	top	of	that,	it	provides	a	great	developer	experience,	such	as	live	code	editing	combined	with	a	time	traveling	debugger.

You	can	use	Redux	together	with	React,	or	with	any	other	view	library.
It	is	tiny	(2kB,	including	dependencies).

Note:	We	are	currently	planning	a	rewrite	of	the	Redux	docs.	Please	take	some	time	to	fill	out	this	survey	on	what	content
is	most	important	in	a	docs	site.	Thanks!

	 	 	 	

Learn	Redux

We	have	a	variety	of	resources	available	to	help	you	learn	Redux,	no	matter	what	your	background	or	learning	style	is.

Just	the	Basics

If	you're	brand	new	to	Redux	and	want	to	understand	the	basic	concepts,	see:

The	Motivation	behind	building	Redux,	the	Core	Concepts,	and	the	Three	Principles.
The	basic	tutorial	in	the	Redux	docs
Redux	creator	Dan	Abramov's	free	"Getting	Started	with	Redux"	video	series	on	Egghead.io
Redux	co-maintainer	Mark	Erikson's	"Redux	Fundamentals"	slideshow	and	list	of	suggested	resources	for	learning
Redux
If	you	learn	best	by	looking	at	code	and	playing	with	it,	check	out	our	list	of	Redux	example	applications,	available	as
separate	projects	in	the	Redux	repo,	and	also	as	interactive	online	examples	on	CodeSandbox.
The	Redux	Tutorials	section	of	the	React/Redux	links	list.	Here's	a	top	list	of	our	recommended	tutorials:

Dave	Ceddia's	posts	What	Does	Redux	Do?	(and	when	should	you	use	it?)	and	How	Redux	Works:	A	Counter-
Example	are	a	great	intro	to	the	basics	of	Redux	and	how	to	use	it	with	React,	as	is	this	post	on	React	and	Redux:
An	Introduction.
Valentino	Gagliardi's	post	React	Redux	Tutorial	for	Beginners:	Learning	Redux	in	2018	is	an	excellent	extended
introduction	to	many	aspects	of	using	Redux.
The	CSS	Tricks	article	Leveling	Up	with	React:	Redux	covers	the	Redux	basics	well.
This	DevGuides:	Introduction	to	Redux	tutorial	covers	several	aspects	of	Redux,	including	actions,	reducers,
usage	with	React,	and	middleware.

Intermediate	Concepts

Once	you've	picked	up	the	basics	of	working	with	actions,	reducers,	and	the	store,	you	may	have	questions	about	topics	like
working	with	asynchronous	logic	and	AJAX	requests,	connecting	a	UI	framework	like	React	to	your	Redux	store,	and	setting	up
an	application	to	use	Redux:

The	"Advanced"	docs	section	covers	working	with	async	logic,	middleware,	routing.
The	Redux	docs	"Learning	Resources"	page	points	to	recommended	articles	on	a	variety	of	Redux-related	topics.
Sophie	DeBenedetto's	8-part	Building	a	Simple	CRUD	App	with	React	+	Redux	series	shows	how	to	put	together	a
basic	CRUD	app	from	scratch.

Real-World	Usage

Going	from	a	TodoMVC	app	to	a	real	production	application	can	be	a	big	jump,	but	we've	got	plenty	of	resources	to	help:

Redux	creator	Dan	Abramov's	free	"Building	React	Applications	with	Idiomatic	Redux"	video	series	builds	on	his
first	video	series	and	covers	topics	like	middleware,	routing,	and	persistence.
The	Redux	FAQ	answers	many	common	questions	about	how	to	use	Redux,	and	the	"Recipes"	docs	section	has
information	on	handling	derived	data,	testing,	structuring	reducer	logic,	and	reducing	boilerplate.
Redux	co-maintainer	Mark	Erikson's	"Practical	Redux"	tutorial	series	demonstrates	real-world	intermediate	and
advanced	techniques	for	working	with	React	and	Redux	(also	available	as	an	interactive	course	on	Educative.io).
The	React/Redux	links	list	has	categorized	articles	on	working	with	reducers	and	selectors,	managing	side	effects,
Redux	architecture	and	best	practices,	and	more.

Read	Me

5

http://redux.js.org
https://reduxframework.com/
https://github.com/reduxjs/redux-devtools
https://reactjs.org
https://docs.google.com/forms/d/e/1FAIpQLSfzIkY3fXZ8PrQKScYMK0YoEgALfAK2qQ0mOj1_ibKv2qDTuQ/viewform
https://travis-ci.org/reduxjs/redux
https://www.npmjs.com/package/redux
https://www.npmjs.com/package/redux
https://discord.gg/0ZcbPKXt5bZ6au5t
https://changelog.com/187
https://redux.js.org/introduction/motivation
https://redux.js.org/introduction/coreconcepts
https://redux.js.org/introduction/threeprinciples
https://redux.js.org/basics
https://egghead.io/series/getting-started-with-redux
http://blog.isquaredsoftware.com/2018/03/presentation-reactathon-redux-fundamentals/
http://blog.isquaredsoftware.com/2017/12/blogged-answers-learn-redux/
https://redux.js.org/introduction/examples
https://github.com/markerikson/react-redux-links/blob/master/redux-tutorials.md
https://github.com/markerikson/react-redux-links
https://daveceddia.com/what-does-redux-do/
https://daveceddia.com/how-does-redux-work/
http://jakesidsmith.com/blog/post/2017-11-18-redux-and-react-an-introduction/
https://www.valentinog.com/blog/react-redux-tutorial-beginners/
https://css-tricks.com/learning-react-redux/
http://devguides.io/redux/
https://redux.js.org/advanced
https://redux.js.org/introduction/learning-resources
http://www.thegreatcodeadventure.com/building-a-simple-crud-app-with-react-redux-part-1/
https://egghead.io/courses/building-react-applications-with-idiomatic-redux
https://redux.js.org/faq
https://redux.js.org/recipes
http://blog.isquaredsoftware.com/series/practical-redux/
https://www.educative.io/collection/5687753853370368/5707702298738688
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/react-redux-links/blob/master/redux-reducers-selectors.md
https://github.com/markerikson/react-redux-links/blob/master/redux-side-effects.md
https://github.com/markerikson/react-redux-links/blob/master/redux-architecture.md

Our	community	has	created	thousands	of	Redux-related	libraries,	addons,	and	tools.	The	"Ecosystem"	docs	page	lists
our	recommendations,	and	there's	a	complete	listing	available	in	the	Redux	addons	catalog.
If	you're	looking	to	learn	from	actual	application	codebases,	the	addons	catalog	also	has	a	list	of	purpose-built	examples
and	real-world	applications.

Finally,	Mark	Erikson	is	teaching	a	series	of	Redux	workshops	through	Workshop.me.	Check	the	workshop	schedule	for
upcoming	dates	and	locations.

Help	and	Discussion

The	#redux	channel	of	the	Reactiflux	Discord	community	is	our	official	resource	for	all	questions	related	to	learning	and	using
Redux.	Reactiflux	is	a	great	place	to	hang	out,	ask	questions,	and	learn	-	come	join	us!

Before	Proceeding	Further

Redux	is	a	valuable	tool	for	organizing	your	state,	but	you	should	also	consider	whether	it's	appropriate	for	your	situation.	Don't
use	Redux	just	because	someone	said	you	should	-	take	some	time	to	understand	the	potential	benefits	and	tradeoffs	of	using	it.

Here	are	some	suggestions	on	when	it	makes	sense	to	use	Redux:

You	have	reasonable	amounts	of	data	changing	over	time
You	need	a	single	source	of	truth	for	your	state
You	find	that	keeping	all	your	state	in	a	top-level	component	is	no	longer	sufficient

Yes,	these	guidelines	are	subjective	and	vague,	but	this	is	for	good	reason.	The	point	at	which	you	should	integrate	Redux	into
your	application	is	different	for	every	user	and	different	for	every	application.

For	more	thoughts	on	how	Redux	is	meant	to	be	used,	see:

You	Might	Not	Need	Redux
The	Tao	of	Redux,	Part	1	-	Implementation	and	Intent
The	Tao	of	Redux,	Part	2	-	Practice	and	Philosophy
Redux	FAQ

Developer	Experience

Dan	Abramov	(author	of	Redux)	wrote	Redux	while	working	on	his	React	Europe	talk	called	“Hot	Reloading	with	Time	Travel”.
His	goal	was	to	create	a	state	management	library	with	a	minimal	API	but	completely	predictable	behavior.	Redux	makes	it
possible	to	implement	logging,	hot	reloading,	time	travel,	universal	apps,	record	and	replay,	without	any	buy-in	from	the
developer.

Influences

Redux	evolves	the	ideas	of	Flux,	but	avoids	its	complexity	by	taking	cues	from	Elm.
Even	if	you	haven't	used	Flux	or	Elm,	Redux	only	takes	a	few	minutes	to	get	started	with.

Installation

To	install	the	stable	version:

npm	install	--save	redux

This	assumes	you	are	using	npm	as	your	package	manager.

If	you're	not,	you	can	access	these	files	on	unpkg,	download	them,	or	point	your	package	manager	to	them.

Most	commonly,	people	consume	Redux	as	a	collection	of	CommonJS	modules.	These	modules	are	what	you	get	when	you
import	redux	in	a	Webpack,	Browserify,	or	a	Node	environment.	If	you	like	to	live	on	the	edge	and	use	Rollup,	we	support	that
as	well.

If	you	don't	use	a	module	bundler,	it's	also	fine.	The	redux	npm	package	includes	precompiled	production	and	development
UMD	builds	in	the	dist	folder.	They	can	be	used	directly	without	a	bundler	and	are	thus	compatible	with	many	popular
JavaScript	module	loaders	and	environments.	For	example,	you	can	drop	a	UMD	build	as	a	<script>	tag	on	the	page,	or	tell
Bower	to	install	it.	The	UMD	builds	make	Redux	available	as	a	window.Redux	global	variable.

The	Redux	source	code	is	written	in	ES2015	but	we	precompile	both	CommonJS	and	UMD	builds	to	ES5	so	they	work	in	any
modern	browser.	You	don't	need	to	use	Babel	or	a	module	bundler	to	get	started	with	Redux.

Read	Me

6

https://redux.js.org/introduction/ecosystem
https://github.com/markerikson/redux-ecosystem-links
https://github.com/markerikson/redux-ecosystem-links/blob/master/apps-and-examples.md
https://workshop.me/?a=mark
https://discord.gg/0ZcbPKXt5bZ6au5t
http://www.reactiflux.com
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-1/
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-2/
https://redux.js.org/faq
https://www.youtube.com/watch?v=xsSnOQynTHs
http://facebook.github.io/flux/
https://github.com/evancz/elm-architecture-tutorial/
https://www.npmjs.com/
https://unpkg.com/redux/
https://github.com/webpack/docs/wiki/commonjs
https://webpack.js.org/
http://browserify.org/
https://rollupjs.org
https://github.com/umdjs/umd
https://unpkg.com/redux/dist/
https://unpkg.com/redux/dist/redux.js
https://github.com/reduxjs/redux/pull/1181#issuecomment-167361975
http://caniuse.com/#feat=es5
https://github.com/reduxjs/redux/blob/master/examples/counter-vanilla/index.html

Complementary	Packages

Most	likely,	you'll	also	need	the	React	bindings	and	the	developer	tools.

npm	install	--save	react-redux

npm	install	--save-dev	redux-devtools

Note	that	unlike	Redux	itself,	many	packages	in	the	Redux	ecosystem	don't	provide	UMD	builds,	so	we	recommend	using
CommonJS	module	bundlers	like	Webpack	and	Browserify	for	the	most	comfortable	development	experience.

The	Gist

The	whole	state	of	your	app	is	stored	in	an	object	tree	inside	a	single	store.
The	only	way	to	change	the	state	tree	is	to	emit	an	action,	an	object	describing	what	happened.
To	specify	how	the	actions	transform	the	state	tree,	you	write	pure	reducers.

That's	it!

import	{	createStore	}	from	'redux'

/**

	*	This	is	a	reducer,	a	pure	function	with	(state,	action)	=>	state	signature.

	*	It	describes	how	an	action	transforms	the	state	into	the	next	state.

	*

	*	The	shape	of	the	state	is	up	to	you:	it	can	be	a	primitive,	an	array,	an	object,

	*	or	even	an	Immutable.js	data	structure.	The	only	important	part	is	that	you	should

	*	not	mutate	the	state	object,	but	return	a	new	object	if	the	state	changes.

	*

	*	In	this	example,	we	use	a	`switch`	statement	and	strings,	but	you	can	use	a	helper	that

	*	follows	a	different	convention	(such	as	function	maps)	if	it	makes	sense	for	your

	*	project.

	*/

function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

//	Create	a	Redux	store	holding	the	state	of	your	app.

//	Its	API	is	{	subscribe,	dispatch,	getState	}.

let	store	=	createStore(counter)

//	You	can	use	subscribe()	to	update	the	UI	in	response	to	state	changes.

//	Normally	you'd	use	a	view	binding	library	(e.g.	React	Redux)	rather	than	subscribe()	directly.

//	However	it	can	also	be	handy	to	persist	the	current	state	in	the	localStorage.

store.subscribe(()	=>	console.log(store.getState()))

//	The	only	way	to	mutate	the	internal	state	is	to	dispatch	an	action.

//	The	actions	can	be	serialized,	logged	or	stored	and	later	replayed.

store.dispatch({	type:	'INCREMENT'	})

//	1

store.dispatch({	type:	'INCREMENT'	})

//	2

store.dispatch({	type:	'DECREMENT'	})

//	1

Instead	of	mutating	the	state	directly,	you	specify	the	mutations	you	want	to	happen	with	plain	objects	called	actions.	Then	you
write	a	special	function	called	a	reducer	to	decide	how	every	action	transforms	the	entire	application's	state.

If	you're	coming	from	Flux,	there	is	a	single	important	difference	you	need	to	understand.	Redux	doesn't	have	a	Dispatcher	or
support	many	stores.	Instead,	there	is	just	a	single	store	with	a	single	root	reducing	function.	As	your	app	grows,	instead	of	adding
stores,	you	split	the	root	reducer	into	smaller	reducers	independently	operating	on	the	different	parts	of	the	state	tree.	This	is
exactly	like	how	there	is	just	one	root	component	in	a	React	app,	but	it	is	composed	out	of	many	small	components.

Read	Me

7

https://github.com/reduxjs/react-redux
https://github.com/reduxjs/redux-devtools
https://webpack.js.org/
http://browserify.org/

This	architecture	might	seem	like	an	overkill	for	a	counter	app,	but	the	beauty	of	this	pattern	is	how	well	it	scales	to	large	and
complex	apps.	It	also	enables	very	powerful	developer	tools,	because	it	is	possible	to	trace	every	mutation	to	the	action	that
caused	it.	You	can	record	user	sessions	and	reproduce	them	just	by	replaying	every	action.

Learn	Redux	from	Its	Authors

Redux	Video	Tutorials	by	Dan	Abramov

Getting	Started	with	Redux

Getting	Started	with	Redux	is	a	video	course	consisting	of	30	videos	narrated	by	Dan	Abramov,	author	of	Redux.	It	is	designed
to	complement	the	“Basics”	part	of	the	docs	while	bringing	additional	insights	about	immutability,	testing,	Redux	best	practices,
and	using	Redux	with	React.	This	course	is	free	and	will	always	be.

“Great	course	on	egghead.io	by	@dan_abramov	-	instead	of	just	showing	you	how	to	use	#redux,	it	also	shows	how	and	why
redux	was	built!”
Sandrino	Di	Mattia

“Plowing	through	@dan_abramov	'Getting	Started	with	Redux'	-	its	amazing	how	much	simpler	concepts	get	with	video.”
Chris	Dhanaraj

“This	video	series	on	Redux	by	@dan_abramov	on	@eggheadio	is	spectacular!”
Eddie	Zaneski

“Come	for	the	name	hype.	Stay	for	the	rock	solid	fundamentals.	(Thanks,	and	great	job	@dan_abramov	and	@eggheadio!)”
Dan

“This	series	of	videos	on	Redux	by	@dan_abramov	is	repeatedly	blowing	my	mind	-	gunna	do	some	serious	refactoring”
Laurence	Roberts

So,	what	are	you	waiting	for?

Watch	the	free	"Getting	Started	with	Redux"	video	series

Note:	If	you	enjoyed	Dan's	course,	consider	supporting	Egghead	by	buying	a	subscription.	Subscribers	have	access	to	the
source	code	of	every	example	in	my	videos	and	tons	of	advanced	lessons	on	other	topics,	including	JavaScript	in	depth,
React,	Angular,	and	more.	Many	Egghead	instructors	are	also	open	source	library	authors,	so	buying	a	subscription	is	a	nice
way	to	thank	them	for	the	work	that	they've	done.

Building	React	Applications	with	Idiomatic	Redux

The	Building	React	Applications	with	Idiomatic	Redux	course	is	a	second	free	video	series	by	Dan	Abramov.	It	picks	up	where
the	first	series	left	off,	and	covers	practical	production	ready	techniques	for	building	your	React	and	Redux	applications:	advanced
state	management,	middleware,	React	Router	integration,	and	other	common	problems	you	are	likely	to	encounter	while	building
applications	for	your	clients	and	customers.	As	with	the	first	series,	this	course	will	always	be	free.

Watch	the	free	"Idiomatic	Redux"	video	series

Practical	Redux	course

Practical	Redux	is	a	paid	interactive	course	by	Redux	co-maintainer	Mark	Erikson.	The	course	is	designed	to	show	how	to	apply
the	basic	concepts	of	Redux	to	building	something	larger	than	a	TodoMVC	application.	It	includes	real-world	topics	like:

Adding	Redux	to	a	new	Create-React-App	project	and	configuring	Hot	Module	Replacement	for	faster	development
Controlling	your	UI	behavior	with	Redux
Using	the	Redux-ORM	library	to	manage	relational	data	in	your	Redux	store
Building	a	master/detail	view	to	display	and	edit	data
Writing	custom	advanced	Redux	reducer	logic	to	solve	specific	problems
Optimizing	performance	of	Redux-connected	form	inputs

And	much	more!

The	course	is	based	on	Mark's	original	free	"Practical	Redux"	blog	tutorial	series,	but	with	updated	and	improved	content.

Redux	Fundamentals	Workshop

Redux	co-maintainer	Mark	Erikson	has	put	together	a	Redux	Fundamentals	workshop,	and	slides	are	available	here.	They
cover:

Read	Me

8

https://egghead.io/series/getting-started-with-redux
https://twitter.com/dan_abramov
https://twitter.com/sandrinodm/status/670548531422326785
https://twitter.com/chrisdhanaraj/status/670328025553219584
https://twitter.com/eddiezane/status/670333133242408960
https://twitter.com/danott/status/669909126554607617
https://twitter.com/gelatindesign/status/669658358643892224
https://egghead.io/series/getting-started-with-redux
https://egghead.io/pricing
https://egghead.io/instructors
https://egghead.io/courses/building-react-applications-with-idiomatic-redux
https://egghead.io/courses/building-react-applications-with-idiomatic-redux
https://www.educative.io/collection/5687753853370368/5707702298738688/
https://twitter.com/acemarke
http://blog.isquaredsoftware.com/series/practical-redux/
https://twitter.com/acemarke
https://blog.isquaredsoftware.com/2018/06/redux-fundamentals-workshop-slides/

The	history	and	purpose	of	Redux
Reducers	and	actions,	and	working	with	a	Redux	store
Using	Redux	with	React
Using	and	writing	Redux	middleware
Working	with	AJAX	calls	and	other	side	effects
Unit	testing	Redux	apps
Real-world	Redux	app	structure	and	development

Documentation

Introduction
Basics
Advanced
Recipes
FAQ
Troubleshooting
Glossary
API	Reference

For	PDF,	ePub,	and	MOBI	exports	for	offline	reading,	and	instructions	on	how	to	create	them,	please	see:	paulkogel/redux-
offline-docs.

For	Offline	docs,	please	see:	devdocs

Examples

Almost	all	examples	have	a	corresponding	CodeSandbox	sandbox.	This	is	an	interactive	version	of	the	code	that	you	can	play
with	online.

Counter	Vanilla:	Source
Counter:	Source	|	Sandbox
Todos:	Source	|	Sandbox
Todos	with	Undo:	Source	|	Sandbox
Todos	w/	Flow:	Source
TodoMVC:	Source	|	Sandbox
Shopping	Cart:	Source	|	Sandbox
Tree	View:	Source	|	Sandbox
Async:	Source	|	Sandbox
Universal:	Source
Real	World:	Source	|	Sandbox

If	you're	new	to	the	NPM	ecosystem	and	have	troubles	getting	a	project	up	and	running,	or	aren't	sure	where	to	paste	the	gist
above,	check	out	simplest-redux-example	that	uses	Redux	together	with	React	and	Browserify.

Testimonials

“Love	what	you're	doing	with	Redux”
Jing	Chen,	creator	of	Flux

“I	asked	for	comments	on	Redux	in	FB's	internal	JS	discussion	group,	and	it	was	universally	praised.	Really	awesome	work.”
Bill	Fisher,	author	of	Flux	documentation

“It's	cool	that	you	are	inventing	a	better	Flux	by	not	doing	Flux	at	all.”
André	Staltz,	creator	of	Cycle

Thanks

The	Elm	Architecture	for	a	great	intro	to	modeling	state	updates	with	reducers;
Turning	the	database	inside-out	for	blowing	my	mind;
Developing	ClojureScript	with	Figwheel	for	convincing	me	that	re-evaluation	should	“just	work”;
Webpack	for	Hot	Module	Replacement;
Flummox	for	teaching	me	to	approach	Flux	without	boilerplate	or	singletons;
disto	for	a	proof	of	concept	of	hot	reloadable	Stores;
NuclearJS	for	proving	this	architecture	can	be	performant;
Om	for	popularizing	the	idea	of	a	single	state	atom;
Cycle	for	showing	how	often	a	function	is	the	best	tool;
React	for	the	pragmatic	innovation.

Read	Me

9

http://redux.js.org/introduction
http://redux.js.org/basics
http://redux.js.org/advanced
http://redux.js.org/recipes
http://redux.js.org/faq
http://redux.js.org/troubleshooting
http://redux.js.org/glossary
http://redux.js.org/api
https://github.com/paulkogel/redux-offline-docs
http://devdocs.io/redux/
https://redux.js.org/introduction/examples#counter-vanilla
https://github.com/reduxjs/redux/tree/master/examples/counter-vanilla
https://redux.js.org/introduction/examples#counter
https://github.com/reduxjs/redux/tree/master/examples/counter
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/counter
https://redux.js.org/introduction/examples#todos
https://github.com/reduxjs/redux/tree/master/examples/todos
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos
https://redux.js.org/introduction/examples#todos-with-undo
https://github.com/reduxjs/redux/tree/master/examples/todos-with-undo
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos-with-undo
https://redux.js.org/introduction/examples#todos-flow
https://github.com/reduxjs/redux/tree/master/examples/todos-flow
https://redux.js.org/introduction/examples#todomvc
https://github.com/reduxjs/redux/tree/master/examples/todomvc
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todomvc
https://redux.js.org/introduction/examples#shopping-cart
https://github.com/reduxjs/redux/tree/master/examples/shopping-cart
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/shopping-cart
https://redux.js.org/introduction/examples#tree-view
https://github.com/reduxjs/redux/tree/master/examples/tree-view
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/tree-view
https://redux.js.org/introduction/examples#async
https://github.com/reduxjs/redux/tree/master/examples/async
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/async
https://redux.js.org/introduction/examples#universal
https://github.com/reduxjs/redux/tree/master/examples/universal
https://redux.js.org/introduction/examples#real-world
https://github.com/reduxjs/redux/tree/master/examples/real-world
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/real-world
https://github.com/jackielii/simplest-redux-example
https://twitter.com/jingc/status/616608251463909376
https://twitter.com/fisherwebdev/status/616286955693682688
https://twitter.com/andrestaltz/status/616271392930201604
https://github.com/evancz/elm-architecture-tutorial
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/
https://www.youtube.com/watch?v=j-kj2qwJa_E
https://webpack.js.org/concepts/hot-module-replacement/
https://github.com/acdlite/flummox
https://github.com/threepointone/disto
https://github.com/optimizely/nuclear-js
https://github.com/omcljs/om
https://github.com/cyclejs/cycle-core
https://github.com/facebook/react

Special	thanks	to	Jamie	Paton	for	handing	over	the	redux	NPM	package	name.

Logo

You	can	find	the	official	logo	on	GitHub.

Change	Log

This	project	adheres	to	Semantic	Versioning.
Every	release,	along	with	the	migration	instructions,	is	documented	on	the	GitHub	Releases	page.

Patrons

The	work	on	Redux	was	funded	by	the	community.
Meet	some	of	the	outstanding	companies	that	made	it	possible:

Webflow
Ximedes

See	the	full	list	of	Redux	patrons,	as	well	as	the	always-growing	list	of	people	and	companies	that	use	Redux.

License

MIT

Read	Me

10

http://jdpaton.github.io
https://github.com/reduxjs/redux/tree/master/logo
http://semver.org/
https://github.com/reduxjs/redux/releases
https://www.patreon.com/reactdx
https://github.com/webflow
https://www.ximedes.com/
https://github.com/reduxjs/redux/issues/310

Introduction
Motivation
Core	Concepts
Three	Principles
Prior	Art
Learning	Resources
Ecosystem
Examples

Introduction

11

Motivation
As	the	requirements	for	JavaScript	single-page	applications	have	become	increasingly	complicated,	our	code	must
manage	more	state	than	ever	before.	This	state	can	include	server	responses	and	cached	data,	as	well	as	locally
created	data	that	has	not	yet	been	persisted	to	the	server.	UI	state	is	also	increasing	in	complexity,	as	we	need	to
manage	active	routes,	selected	tabs,	spinners,	pagination	controls,	and	so	on.

Managing	this	ever-changing	state	is	hard.	If	a	model	can	update	another	model,	then	a	view	can	update	a	model,
which	updates	another	model,	and	this,	in	turn,	might	cause	another	view	to	update.	At	some	point,	you	no	longer
understand	what	happens	in	your	app	as	you	have	lost	control	over	the	when,	why,	and	how	of	its	state.	When	a
system	is	opaque	and	non-deterministic,	it's	hard	to	reproduce	bugs	or	add	new	features.

As	if	this	weren't	bad	enough,	consider	the	new	requirements	becoming	common	in	front-end	product
development.	As	developers,	we	are	expected	to	handle	optimistic	updates,	server-side	rendering,	fetching	data
before	performing	route	transitions,	and	so	on.	We	find	ourselves	trying	to	manage	a	complexity	that	we	have	never
had	to	deal	with	before,	and	we	inevitably	ask	the	question:	is	it	time	to	give	up?	The	answer	is	no.

This	complexity	is	difficult	to	handle	as	we're	mixing	two	concepts	that	are	very	hard	for	the	human	mind	to	reason
about:	mutation	and	asynchronicity.	I	call	them	Mentos	and	Coke.	Both	can	be	great	in	separation,	but	together
they	create	a	mess.	Libraries	like	React	attempt	to	solve	this	problem	in	the	view	layer	by	removing	both	asynchrony
and	direct	DOM	manipulation.	However,	managing	the	state	of	your	data	is	left	up	to	you.	This	is	where	Redux	enters.

Following	in	the	steps	of	Flux,	CQRS,	and	Event	Sourcing,	Redux	attempts	to	make	state	mutations	predictable
by	imposing	certain	restrictions	on	how	and	when	updates	can	happen.	These	restrictions	are	reflected	in	the	three
principles	of	Redux.

Motivation

12

http://www.quirksmode.org/blog/archives/2015/07/stop_pushing_th.html
https://en.wikipedia.org/wiki/Diet_Coke_and_Mentos_eruption
http://facebook.github.io/react
http://facebook.github.io/flux
http://martinfowler.com/bliki/CQRS.html
http://martinfowler.com/eaaDev/EventSourcing.html

Core	Concepts
Imagine	your	app’s	state	is	described	as	a	plain	object.	For	example,	the	state	of	a	todo	app	might	look	like	this:

{

		todos:	[{

				text:	'Eat	food',

				completed:	true

		},	{

				text:	'Exercise',

				completed:	false

		}],

		visibilityFilter:	'SHOW_COMPLETED'

}

This	object	is	like	a	“model”	except	that	there	are	no	setters.	This	is	so	that	different	parts	of	the	code	can’t	change	the
state	arbitrarily,	causing	hard-to-reproduce	bugs.

To	change	something	in	the	state,	you	need	to	dispatch	an	action.	An	action	is	a	plain	JavaScript	object	(notice	how
we	don’t	introduce	any	magic?)	that	describes	what	happened.	Here	are	a	few	example	actions:

{	type:	'ADD_TODO',	text:	'Go	to	swimming	pool'	}

{	type:	'TOGGLE_TODO',	index:	1	}

{	type:	'SET_VISIBILITY_FILTER',	filter:	'SHOW_ALL'	}

Enforcing	that	every	change	is	described	as	an	action	lets	us	have	a	clear	understanding	of	what’s	going	on	in	the
app.	If	something	changed,	we	know	why	it	changed.	Actions	are	like	breadcrumbs	of	what	has	happened.	Finally,	to
tie	state	and	actions	together,	we	write	a	function	called	a	reducer.	Again,	nothing	magical	about	it—it’s	just	a	function
that	takes	state	and	action	as	arguments,	and	returns	the	next	state	of	the	app.	It	would	be	hard	to	write	such	a
function	for	a	big	app,	so	we	write	smaller	functions	managing	parts	of	the	state:

function	visibilityFilter(state	=	'SHOW_ALL',	action)	{

		if	(action.type	===	'SET_VISIBILITY_FILTER')	{

				return	action.filter

		}	else	{

				return	state

		}

}

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						return	state.concat([{	text:	action.text,	completed:	false	}])

				case	'TOGGLE_TODO':

						return	state.map(

								(todo,	index)	=>

										action.index	===	index

												?	{	text:	todo.text,	completed:	!todo.completed	}

												:	todo

)

				default:

						return	state

		}

}

And	we	write	another	reducer	that	manages	the	complete	state	of	our	app	by	calling	those	two	reducers	for	the
corresponding	state	keys:

function	todoApp(state	=	{},	action)	{

		return	{

Core	Concepts

13

				todos:	todos(state.todos,	action),

				visibilityFilter:	visibilityFilter(state.visibilityFilter,	action)

		}

}

This	is	basically	the	whole	idea	of	Redux.	Note	that	we	haven’t	used	any	Redux	APIs.	It	comes	with	a	few	utilities	to
facilitate	this	pattern,	but	the	main	idea	is	that	you	describe	how	your	state	is	updated	over	time	in	response	to	action
objects,	and	90%	of	the	code	you	write	is	just	plain	JavaScript,	with	no	use	of	Redux	itself,	its	APIs,	or	any	magic.

Core	Concepts

14

Three	Principles
Redux	can	be	described	in	three	fundamental	principles:

Single	source	of	truth

The	state	of	your	whole	application	is	stored	in	an	object	tree	within	a	single	store.

This	makes	it	easy	to	create	universal	apps,	as	the	state	from	your	server	can	be	serialized	and	hydrated	into	the
client	with	no	extra	coding	effort.	A	single	state	tree	also	makes	it	easier	to	debug	or	inspect	an	application;	it	also
enables	you	to	persist	your	app's	state	in	development,	for	a	faster	development	cycle.	Some	functionality	which	has
been	traditionally	difficult	to	implement	-	Undo/Redo,	for	example	-	can	suddenly	become	trivial	to	implement,	if	all	of
your	state	is	stored	in	a	single	tree.

console.log(store.getState())

/*	Prints

{

		visibilityFilter:	'SHOW_ALL',

		todos:	[

				{

						text:	'Consider	using	Redux',

						completed:	true,

				},

				{

						text:	'Keep	all	state	in	a	single	tree',

						completed:	false

				}

]

}

*/

State	is	read-only

The	only	way	to	change	the	state	is	to	emit	an	action,	an	object	describing	what	happened.

This	ensures	that	neither	the	views	nor	the	network	callbacks	will	ever	write	directly	to	the	state.	Instead,	they	express
an	intent	to	transform	the	state.	Because	all	changes	are	centralized	and	happen	one	by	one	in	a	strict	order,	there
are	no	subtle	race	conditions	to	watch	out	for.	As	actions	are	just	plain	objects,	they	can	be	logged,	serialized,	stored,
and	later	replayed	for	debugging	or	testing	purposes.

store.dispatch({

		type:	'COMPLETE_TODO',

		index:	1

})

store.dispatch({

		type:	'SET_VISIBILITY_FILTER',

		filter:	'SHOW_COMPLETED'

})

Changes	are	made	with	pure	functions

To	specify	how	the	state	tree	is	transformed	by	actions,	you	write	pure	reducers.

Reducers	are	just	pure	functions	that	take	the	previous	state	and	an	action,	and	return	the	next	state.	Remember	to
return	new	state	objects,	instead	of	mutating	the	previous	state.	You	can	start	with	a	single	reducer,	and	as	your	app
grows,	split	it	off	into	smaller	reducers	that	manage	specific	parts	of	the	state	tree.	Because	reducers	are	just

Three	Principles

15

functions,	you	can	control	the	order	in	which	they	are	called,	pass	additional	data,	or	even	make	reusable	reducers	for
common	tasks	such	as	pagination.

function	visibilityFilter(state	=	'SHOW_ALL',	action)	{

		switch	(action.type)	{

				case	'SET_VISIBILITY_FILTER':

						return	action.filter

				default:

						return	state

		}

}

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						return	[

								...state,

								{

										text:	action.text,

										completed:	false

								}

]

				case	'COMPLETE_TODO':

						return	state.map((todo,	index)	=>	{

								if	(index	===	action.index)	{

										return	Object.assign({},	todo,	{

												completed:	true

										})

								}

								return	todo

						})

				default:

						return	state

		}

}

import	{	combineReducers,	createStore	}	from	'redux'

const	reducer	=	combineReducers({	visibilityFilter,	todos	})

const	store	=	createStore(reducer)

That's	it!	Now	you	know	what	Redux	is	all	about.

Three	Principles

16

Prior	Art
Redux	has	a	mixed	heritage.	It	is	similar	to	some	patterns	and	technologies,	but	is	also	different	from	them	in
important	ways.	We'll	explore	some	of	the	similarities	and	the	differences	below.

Flux

Redux	was	inspired	by	several	important	qualities	of	Flux.	Like	Flux,	Redux	prescribes	that	you	concentrate	your
model	update	logic	in	a	certain	layer	of	your	application	(“stores”	in	Flux,	“reducers”	in	Redux).	Instead	of	letting	the
application	code	directly	mutate	the	data,	both	tell	you	to	describe	every	mutation	as	a	plain	object	called	an	“action”.

Unlike	Flux,	Redux	does	not	have	the	concept	of	a	Dispatcher.	This	is	because	it	relies	on	pure	functions	instead
of	event	emitters,	and	pure	functions	are	easy	to	compose	and	don't	need	an	additional	entity	managing	them.
Depending	on	how	you	view	Flux,	you	may	see	this	as	either	a	deviation	or	an	implementation	detail.	Flux	has	often
been	described	as		(state,	action)	=>	state	.	In	this	sense,	Redux	is	true	to	the	Flux	architecture,	but	makes	it
simpler	thanks	to	pure	functions.

Another	important	difference	from	Flux	is	that	Redux	assumes	you	never	mutate	your	data.	You	can	use	plain
objects	and	arrays	for	your	state	just	fine,	but	mutating	them	inside	the	reducers	is	strongly	discouraged.	You	should
always	return	a	new	object,	which	is	easy	with	the	object	spread	operator	proposal,	or	with	a	library	like	Immutable.

While	it	is	technically	possible	to	write	impure	reducers	that	mutate	the	data	for	performance	corner	cases,	we	actively
discourage	you	from	doing	this.	Development	features	like	time	travel,	record/replay,	or	hot	reloading	will	break.
Moreover	it	doesn't	seem	like	immutability	poses	performance	problems	in	most	real	apps,	because,	as	Om
demonstrates,	even	if	you	lose	out	on	object	allocation,	you	still	win	by	avoiding	expensive	re-renders	and	re-
calculations,	as	you	know	exactly	what	changed	thanks	to	reducer	purity.

For	what	it's	worth,	Flux's	creators	approve	of	Redux.

Elm

Elm	is	a	functional	programming	language	inspired	by	Haskell	and	created	by	Evan	Czaplicki.	It	enforces	a	“model
view	update”	architecture,	where	the	update	has	the	following	signature:		(action,	state)	=>	state	.	Elm	“updaters”
serve	the	same	purpose	as	reducers	in	Redux.

Unlike	Redux,	Elm	is	a	language,	so	it	is	able	to	benefit	from	many	things	like	enforced	purity,	static	typing,	out	of	the
box	immutability,	and	pattern	matching	(using	the		case		expression).	Even	if	you	don't	plan	to	use	Elm,	you	should
read	about	the	Elm	architecture,	and	play	with	it.	There	is	an	interesting	JavaScript	library	playground	implementing
similar	ideas.	We	should	look	there	for	inspiration	on	Redux!	One	way	that	we	can	get	closer	to	the	static	typing	of
Elm	is	by	using	a	gradual	typing	solution	like	Flow.

Immutable

Immutable	is	a	JavaScript	library	implementing	persistent	data	structures.	It	is	performant	and	has	an	idiomatic
JavaScript	API.

Immutable	and	most	similar	libraries	are	orthogonal	to	Redux.	Feel	free	to	use	them	together!

Redux	doesn't	care	how	you	store	the	state—it	can	be	a	plain	object,	an	Immutable	object,	or	anything	else.
You'll	probably	want	a	(de)serialization	mechanism	for	writing	universal	apps	and	hydrating	their	state	from	the	server,
but	other	than	that,	you	can	use	any	data	storage	library	as	long	as	it	supports	immutability.	For	example,	it	doesn't
make	sense	to	use	Backbone	for	Redux	state,	because	Backbone	models	are	mutable.

Prior	Art

17

https://facebook.github.io/flux/
https://speakerdeck.com/jmorrell/jsconf-uy-flux-those-who-forget-the-past-dot-dot-dot-1
https://facebook.github.io/immutable-js
https://github.com/reduxjs/redux/issues/328#issuecomment-125035516
https://github.com/omcljs/om
https://twitter.com/jingc/status/616608251463909376
https://twitter.com/fisherwebdev/status/616286955693682688
http://elm-lang.org/
https://twitter.com/czaplic
https://github.com/evancz/elm-architecture-tutorial/
https://github.com/paldepind/noname-functional-frontend-framework
https://github.com/reduxjs/redux/issues/290
https://facebook.github.io/immutable-js

Note	that,	even	if	your	immutable	library	supports	cursors,	you	shouldn't	use	them	in	a	Redux	app.	The	whole	state
tree	should	be	considered	read-only,	and	you	should	use	Redux	for	updating	the	state,	and	subscribing	to	the
updates.	Therefore	writing	via	cursor	doesn't	make	sense	for	Redux.	If	your	only	use	case	for	cursors	is
decoupling	the	state	tree	from	the	UI	tree	and	gradually	refining	the	cursors,	you	should	look	at	selectors
instead.	Selectors	are	composable	getter	functions.	See	reselect	for	a	really	great	and	concise	implementation	of
composable	selectors.

Baobab

Baobab	is	another	popular	library	implementing	immutable	API	for	updating	plain	JavaScript	objects.	While	you	can
use	it	with	Redux,	there	is	little	benefit	in	using	them	together.

Most	of	the	functionality	Baobab	provides	is	related	to	updating	the	data	with	cursors,	but	Redux	enforces	that	the
only	way	to	update	the	data	is	to	dispatch	an	action.	Therefore	they	solve	the	same	problem	differently,	and	don't
complement	each	other.

Unlike	Immutable,	Baobab	doesn't	yet	implement	any	special	efficient	data	structures	under	the	hood,	so	you	don't
really	win	anything	from	using	it	together	with	Redux.	It's	easier	to	just	use	plain	objects	in	this	case.

RxJS

RxJS	is	a	superb	way	to	manage	the	complexity	of	asynchronous	apps.	In	fact	there	is	an	effort	to	create	a	library	that
models	human-computer	interaction	as	interdependent	observables.

Does	it	make	sense	to	use	Redux	together	with	RxJS?	Sure!	They	work	great	together.	For	example,	it	is	easy	to
expose	a	Redux	store	as	an	observable:

function	toObservable(store)	{

		return	{

				subscribe({	next	})	{

						const	unsubscribe	=	store.subscribe(()	=>	next(store.getState()))

						next(store.getState())

						return	{	unsubscribe	}

				}

		}

}

Similarly,	you	can	compose	different	asynchronous	streams	to	turn	them	into	actions	before	feeding	them	to
	store.dispatch()	.

The	question	is:	do	you	really	need	Redux	if	you	already	use	Rx?	Maybe	not.	It's	not	hard	to	re-implement	Redux	in
Rx.	Some	say	it's	a	two-liner	using	Rx		.scan()		method.	It	may	very	well	be!

If	you're	in	doubt,	check	out	the	Redux	source	code	(there	isn't	much	going	on	there),	as	well	as	its	ecosystem	(for
example,	the	developer	tools).	If	you	don't	care	too	much	about	it	and	want	to	go	with	the	reactive	data	flow	all	the
way,	you	might	want	to	explore	something	like	Cycle	instead,	or	even	combine	it	with	Redux.	Let	us	know	how	it	goes!

Prior	Art

18

http://github.com/faassen/reselect
https://github.com/Yomguithereal/baobab
https://github.com/ReactiveX/RxJS
http://cycle.js.org
https://github.com/jas-chen/rx-redux
https://github.com/reduxjs/redux-devtools
http://cycle.js.org

Learning	Resources
The	Redux	docs	are	intended	to	teach	the	basic	concepts	of	Redux,	as	well	as	explain	key	concepts	for	use	in	real-
world	applications.	However,	the	docs	can't	cover	everything.	Happily,	there	are	many	other	great	resources	available
for	learning	Redux.	We	encourage	you	to	check	them	out.	Many	of	them	cover	topics	that	are	beyond	the	scope	of	the
docs,	or	describe	the	same	topics	in	other	ways	that	may	work	better	for	your	learning	style.

This	page	includes	our	recommendations	for	some	of	the	best	external	resources	available	to	learn	Redux.	For	an
additional	extensive	list	of	tutorials,	articles,	and	other	resources	on	React,	Redux,	Javascript,	and	related	topics,	see
the	React/Redux	Links	list.

Basic	Introductions
Tutorials	that	teach	the	basic	concepts	of	Redux	and	how	to	use	it

Getting	Started	with	Redux	-	Video	Series
https://egghead.io/series/getting-started-with-redux
https://github.com/tayiorbeii/egghead.io_redux_course_notes
Dan	Abramov,	the	creator	of	Redux,	demonstrates	various	concepts	in	30	short	(2-5	minute)	videos.	The	linked
Github	repo	contains	notes	and	transcriptions	of	the	videos.

Building	React	Applications	with	Idiomatic	Redux	-	Video	Series
https://egghead.io/series/building-react-applications-with-idiomatic-redux
https://github.com/tayiorbeii/egghead.io_idiomatic_redux_course_notes
Dan	Abramov's	second	video	tutorial	series,	continuing	directly	after	the	first.	Includes	lessons	on	store	initial
state,	using	Redux	with	React	Router,	using	"selector"	functions,	normalizing	state,	use	of	Redux	middleware,
async	action	creators,	and	more.	The	linked	Github	repo	contains	notes	and	transcriptions	of	the	videos.

Live	React:	Hot	Reloading	and	Time	Travel
http://youtube.com/watch?v=xsSnOQynTHs
Dan	Abramov's	original	conference	talk	that	introduced	Redux.	See	how	constraints	enforced	by	Redux	make	hot
reloading	with	time	travel	easy

A	Cartoon	Guide	to	Redux
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
A	high-level	description	of	Redux,	with	friendly	cartoons	to	help	illustrate	the	ideas.

Leveling	Up	with	React:	Redux
https://css-tricks.com/learning-react-redux/
A	very	well-written	introduction	to	Redux	and	its	related	concepts,	with	some	nifty	cartoon-ish	diagrams.

An	Introduction	to	Redux
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
An	overview	and	intro	to	the	basic	concepts	of	Redux.	Looks	at	the	benefits	of	using	Redux,	how	it	differs	from
MVC	or	Flux,	and	its	relation	to	functional	programming.

Redux	Tutorial
https://www.pshrmn.com/tutorials/react/redux/
A	short,	clear	tutorial	that	introduces	basic	Redux	terms,	shows	how	to	split	reducer	functions,	and	describes	the
Redux	store	API.

Learning	Resources

19

https://github.com/markerikson/react-redux-links
https://egghead.io/series/getting-started-with-redux
https://github.com/tayiorbeii/egghead.io_redux_course_notes
https://egghead.io/series/building-react-applications-with-idiomatic-redux
https://github.com/tayiorbeii/egghead.io_idiomatic_redux_course_notes
http://youtube.com/watch?v=xsSnOQynTHs
https://code-cartoons.com/a-cartoon-intro-to-redux-3afb775501a6
https://css-tricks.com/learning-react-redux/
https://www.smashingmagazine.com/2016/06/an-introduction-to-redux/
https://www.pshrmn.com/tutorials/react/redux/

Redux:	From	Twitter	Hype	to	Production
http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production#/
An	extremely	well-produced	slideshow	that	visually	steps	through	core	Redux	concepts,	usage	with	React,
project	organization,	and	side	effects	with	thunks	and	sagas.	Has	some	absolutely	fantastic	animated	diagrams
demonstrating	how	data	flows	through	a	React+Redux	architecture.

DevGuides:	Introduction	to	Redux
http://devguides.io/redux/
A	tutorial	that	covers	several	aspects	of	Redux,	including	actions,	reducers,	usage	with	React,	and	middleware.

Using	Redux	With	React
Explanations	of	the	React-Redux	bindings	and	the		connect		function

Why	Redux	is	Useful	in	React	Apps
https://www.fullstackreact.com/articles/redux-with-mark-erikson/
An	explanation	of	some	of	the	benefits	of	using	Redux	with	React,	including	sharing	data	between	components
and	hot	module	reloading.

What	Does	Redux	Do?	(and	when	should	you	use	it?)
https://daveceddia.com/what-does-redux-do/
An	excellent	summary	of	how	Redux	helps	solve	data	flow	problems	in	a	React	app.

How	Redux	Works:	A	Counter-Example
https://daveceddia.com/how-does-redux-work/
A	great	follow-up	to	the	previous	article.	It	explains	how	to	use	Redux	and	React-Redux,	by	first	showing	a	React
component	that	stores	a	value	in	its	internal	state,	and	then	refactoring	it	to	use	Redux	instead.	Along	the	way,
the	article	explains	important	Redux	terms	and	concepts,	and	how	they	all	fit	together	to	make	the	Redux	data
flow	work	properly.

Redux	and	React:	An	Introduction
http://jakesidsmith.com/blog/post/2017-11-18-redux-and-react-an-introduction/
A	great	introduction	to	Redux's	core	concepts,	with	explanations	of	how	to	use	the	React-Redux	package	to	use
Redux	with	React.

Project-Based	Tutorials
Tutorials	that	teach	Redux	concepts	by	building	projects,	including	larger	"real-world"-type	applications

Practical	Redux
http://blog.isquaredsoftware.com/2016/10/practical-redux-part-0-introduction/
http://blog.isquaredsoftware.com/series/practical-redux/
An	ongoing	series	of	posts	intended	to	demonstrate	a	number	of	specific	Redux	techniques	by	building	a	sample
application,	based	on	the	MekHQ	application	for	managing	Battletech	campaigns.	Written	by	Redux	co-
maintainer	Mark	Erikson.	Covers	topics	like	managing	relational	data,	connecting	multiple	components	and	lists,
complex	reducer	logic	for	features,	handling	forms,	showing	modal	dialogs,	and	much	more.

Building	a	Simple	CRUD	App	with	React	+	Redux
http://www.thegreatcodeadventure.com/building-a-simple-crud-app-with-react-redux-part-1/
A	nifty	8-part	series	that	demonstrates	building	a	CRUD	app,	including	routing,	AJAX	calls,	and	the	various
CRUD	aspects.	Very	well	written,	with	some	useful	diagrams	as	well.

Learning	Resources

20

http://slides.com/jenyaterpil/redux-from-twitter-hype-to-production#/
http://devguides.io/redux/
https://www.fullstackreact.com/articles/redux-with-mark-erikson/
https://daveceddia.com/what-does-redux-do/
https://daveceddia.com/how-does-redux-work/
http://jakesidsmith.com/blog/post/2017-11-18-redux-and-react-an-introduction/
http://blog.isquaredsoftware.com/2016/10/practical-redux-part-0-introduction/
http://blog.isquaredsoftware.com/series/practical-redux/
http://www.thegreatcodeadventure.com/building-a-simple-crud-app-with-react-redux-part-1/

The	Soundcloud	Client	in	React	+	Redux
http://www.robinwieruch.de/the-soundcloud-client-in-react-redux/
A	detailed	walkthrough	demonstrating	project	setup,	routing,	authentication,	fetching	of	remote	data,	and
wrapping	of	a	stateful	library.

Full-Stack	Redux	Tutorial
http://teropa.info/blog/2015/09/10/full-stack-redux-tutorial.html
A	full-blown,	in-depth	tutorial	that	builds	up	a	complete	client-server	application.

Getting	Started	with	React,	Redux	and	Immutable:	a	Test-Driven	Tutorial
http://www.theodo.fr/blog/2016/03/getting-started-with-react-redux-and-immutable-a-test-driven-tutorial-part-1/
http://www.theodo.fr/blog/2016/03/getting-started-with-react-redux-and-immutable-a-test-driven-tutorial-part-2/
Another	solid,	in-depth	tutorial,	similar	to	the	"Full-Stack"	tutorial.	Builds	a	client-only	TodoMVC	app,	and
demonstrates	a	good	project	setup	(including	a	Mocha+JSDOM-based	testing	configuration).	Well-written,	covers
many	concepts,	and	very	easy	to	follow.

Redux	Hero:	An	Intro	to	Redux	and	Reselect
https://decembersoft.com/posts/redux-hero-part-1-a-hero-is-born-a-fun-introduction-to-redux-js/
An	introduction	to	Redux	and	related	libraries	through	building	a	small	RPG-style	game

Redux	Implementation
Explanations	of	how	Redux	works	internally,	by	writing	miniature	reimplementations

Build	Yourself	a	Redux
https://zapier.com/engineering/how-to-build-redux/
An	excellent	in-depth	"build	a	mini-Redux"	article,	which	covers	not	only	Redux's	core,	but	also		connect		and
middleware	as	well.

Connect.js	explained
https://gist.github.com/gaearon/1d19088790e70ac32ea636c025ba424e
A	very	simplified	version	of	React	Redux's		connect()		function	that	illustrates	the	basic	implementation

Let's	Write	Redux!
http://www.jamasoftware.com/blog/lets-write-redux/
Walks	through	writing	a	miniature	version	of	Redux	step-by-step,	to	help	explain	the	concepts	and
implementation.

Reducers
Articles	discussing	ways	to	write	reducer	functions

Taking	Advantage	of		combineReducers	
http://randycoulman.com/blog/2016/11/22/taking-advantage-of-combinereducers/
Examples	of	using		combineReducers		multiple	times	to	produce	a	state	tree,	and	some	thoughts	on	tradeoffs	in
various	approaches	to	reducer	logic.

The	Power	of	Higher-Order	Reducers
http://slides.com/omnidan/hor#/
A	slideshow	from	the	author	of	redux-undo	and	other	libraries,	explaining	the	concept	of	higher-order	reducers
and	how	they	can	be	used

Learning	Resources

21

http://www.robinwieruch.de/the-soundcloud-client-in-react-redux/
http://teropa.info/blog/2015/09/10/full-stack-redux-tutorial.html
http://www.theodo.fr/blog/2016/03/getting-started-with-react-redux-and-immutable-a-test-driven-tutorial-part-1/
http://www.theodo.fr/blog/2016/03/getting-started-with-react-redux-and-immutable-a-test-driven-tutorial-part-2/
https://decembersoft.com/posts/redux-hero-part-1-a-hero-is-born-a-fun-introduction-to-redux-js/
https://zapier.com/engineering/how-to-build-redux/
https://gist.github.com/gaearon/1d19088790e70ac32ea636c025ba424e
http://www.jamasoftware.com/blog/lets-write-redux/
http://randycoulman.com/blog/2016/11/22/taking-advantage-of-combinereducers/
http://slides.com/omnidan/hor#/

Reducer	composition	with	Higher	Order	Reducers
https://medium.com/@mange_vibration/reducer-composition-with-higher-order-reducers-35c3977ed08f
Some	great	examples	of	writing	small	functions	that	can	be	composed	together	to	perform	larger	specific	reducer
tasks,	such	as	providing	initial	state,	filtering,	updating	specific	keys,	and	more.

Higher	Order	Reducers	-	It	just	sounds	scary
https://medium.com/@danielkagan/high-order-reducers-it-just-sounds-scary-2b9e5dbfc705
Explains	how	reducers	can	be	composed	like	Lego	bricks	to	create	reusable	and	testable	reducer	logic.

Selectors
Explanations	of	how	and	why	to	use	selector	functions	to	read	values	from	state

Idiomatic	Redux:	Using	Reselect	Selectors	for	Encapsulation	and	Performance
https://blog.isquaredsoftware.com/2017/12/idiomatic-redux-using-reselect-selectors/
A	complete	guide	to	why	you	should	use	selector	functions	with	Redux,	how	to	use	the	Reselect	library	to	write
optimized	selectors,	and	advanced	tips	for	improving	performance.

ReactCasts	#8:	Selectors	in	Redux
https://www.youtube.com/watch?v=frT3to2ACCw
A	great	overview	of	why	and	how	to	use	selector	functions	to	retrieve	data	from	the	store,	and	derive	additional
data	from	store	values

Optimizing	React	Redux	Application	Development	with	Reselect
https://codebrahma.com/reselect-tutorial-optimizing-react-redux-application-development-with-reselect/
A	good	tutorial	on	Reselect.	Covers	the	concept	of	"selector	functions",	how	to	use	Reselect's	API,	and	how	to
use	memoized	selectors	to	improve	performance.

Usage	of	Reselect	in	a	React-Redux	Application
https://dashbouquet.com/blog/frontend-development/usage-of-reselect-in-a-react-redux-application
Discusses	the	importance	of	memoized	selectors	for	performance,	and	good	practices	for	using	Reselect.

React,	Reselect,	and	Redux
https://medium.com/@parkerdan/react-reselect-and-redux-b34017f8194c
An	explanation	of	how	Reselect's	memoized	selector	functions	are	useful	in	Redux	apps,	and	how	to	create
unique	selector	instances	for	each	component	instance.

Normalization
How	to	structure	the	Redux	store	like	a	database	for	best	performance

Querying	a	Redux	Store
https://medium.com/@adamrackis/querying-a-redux-store-37db8c7f3b0f
A	look	at	best	practices	for	organizing	and	storing	data	in	Redux,	including	normalizing	data	and	use	of	selector
functions.

Normalizing	Redux	Stores	for	Maximum	Code	Reuse
https://medium.com/@adamrackis/normalizing-redux-stores-for-maximum-code-reuse-ae6e3844ae95
Thoughts	on	how	normalized	Redux	stores	enable	some	useful	data	handling	approaches,	with	examples	of
using	selector	functions	to	denormalize	hierarchical	data.

Advanced	Redux	Entity	Normalization
https://medium.com/@dcousineau/advanced-redux-entity-normalization-f5f1fe2aefc5
Describes	a	"keyWindow"	concept	for	tracking	subsets	of	entities	in	state,	similar	to	an	SQL	"view".	A	useful

Learning	Resources

22

https://medium.com/@mange_vibration/reducer-composition-with-higher-order-reducers-35c3977ed08f
https://medium.com/@danielkagan/high-order-reducers-it-just-sounds-scary-2b9e5dbfc705
https://blog.isquaredsoftware.com/2017/12/idiomatic-redux-using-reselect-selectors/
https://www.youtube.com/watch?v=frT3to2ACCw
https://codebrahma.com/reselect-tutorial-optimizing-react-redux-application-development-with-reselect/
https://dashbouquet.com/blog/frontend-development/usage-of-reselect-in-a-react-redux-application
https://medium.com/@parkerdan/react-reselect-and-redux-b34017f8194c
https://medium.com/@adamrackis/querying-a-redux-store-37db8c7f3b0f
https://medium.com/@adamrackis/normalizing-redux-stores-for-maximum-code-reuse-ae6e3844ae95
https://medium.com/@dcousineau/advanced-redux-entity-normalization-f5f1fe2aefc5

extension	to	the	idea	of	normalized	data.

Middleware
Explanations	and	examples	of	how	middleware	work	and	how	to	write	them

Exploring	Redux	Middlewares
http://blog.krawaller.se/posts/exploring-redux-middleware/
Understanding	middlewares	through	a	series	of	small	experiments

Redux	Middleware	Tutorial
http://www.pshrmn.com/tutorials/react/redux-middleware/
An	overview	of	what	middleware	is,	how		applyMiddleware		works,	and	how	to	write	middleware.

ReactCasts	#6:	Redux	Middleware
https://www.youtube.com/watch?v=T-qtHI1qHIg
A	screencast	that	describes	how	middleware	fit	into	Redux,	their	uses,	and	how	to	implement	a	custom
middleware

A	Beginner's	Guide	to	Redux	Middleware
https://www.codementor.io/reactjs/tutorial/beginner-s-guide-to-redux-middleware
A	useful	explanation	of	middleware	use	cases,	with	numerous	examples

Functional	Composition	in	Javascript
https://joecortopassi.com/articles/functional-composition-in-javascript/
Breaking	down	how	the		compose		function	works

Side	Effects	-	Basics
Introductions	to	handling	async	behavior	in	Redux

Stack	Overflow:	Dispatching	Redux	Actions	with	a	Timeout
http://stackoverflow.com/questions/35411423/how-to-dispatch-a-redux-action-with-a-
timeout/35415559#35415559
Dan	Abramov	explains	the	basics	of	managing	async	behavior	in	Redux,	walking	through	a	progressive	series	of
approaches	(inline	async	calls,	async	action	creators,	thunk	middleware).

Stack	Overflow:	Why	do	we	need	middleware	for	async	flow	in	Redux?
http://stackoverflow.com/questions/34570758/why-do-we-need-middleware-for-async-flow-in-
redux/34599594#34599594
Dan	Abramov	gives	reasons	for	using	thunks	and	async	middleware,	and	some	useful	patterns	for	using	thunks.

What	the	heck	is	a	"thunk"?
https://daveceddia.com/what-is-a-thunk/
A	quick	explanation	for	what	the	word	"thunk"	means	in	general,	and	for	Redux	specifically.

Thunks	in	Redux:	The	Basics
https://medium.com/fullstack-academy/thunks-in-redux-the-basics-85e538a3fe60
A	detailed	look	at	what	thunks	are,	what	they	solve,	and	how	to	use	them.

Side	Effects	-	Advanced
Advanced	tools	and	techniques	for	managing	async	behavior

Learning	Resources

23

http://blog.krawaller.se/posts/exploring-redux-middleware/
http://www.pshrmn.com/tutorials/react/redux-middleware/
https://www.youtube.com/watch?v=T-qtHI1qHIg
https://www.codementor.io/reactjs/tutorial/beginner-s-guide-to-redux-middleware
https://joecortopassi.com/articles/functional-composition-in-javascript/
http://stackoverflow.com/questions/35411423/how-to-dispatch-a-redux-action-with-a-timeout/35415559#35415559
http://stackoverflow.com/questions/34570758/why-do-we-need-middleware-for-async-flow-in-redux/34599594#34599594
https://daveceddia.com/what-is-a-thunk/
https://medium.com/fullstack-academy/thunks-in-redux-the-basics-85e538a3fe60

What	is	the	right	way	to	do	asynchronous	operations	in	Redux?
https://decembersoft.com/posts/what-is-the-right-way-to-do-asynchronous-operations-in-redux/
An	excellent	look	at	the	most	popular	libraries	for	Redux	side	effects,	with	comparisons	of	how	each	one	works.

Redux	4	Ways
https://medium.com/react-native-training/redux-4-ways-95a130da0cdc
Side-by-side	comparisons	of	implementing	some	basic	data	fetching	using	thunks,	sagas,	observables,	and	a
promise	middleware

Idiomatic	Redux:	Thoughts	on	Thunks,	Sagas,	Abstractions,	and	Reusability
http://blog.isquaredsoftware.com/2017/01/idiomatic-redux-thoughts-on-thunks-sagas-abstraction-and-reusability/
A	response	to	several	"thunks	are	bad"	concerns,	arguing	that	thunks	(and	sagas)	are	still	a	valid	approach	for
managing	complex	sync	logic	and	async	side	effects.

Javascript	Power	Tools:	Redux-Saga
http://formidable.com/blog/2017/javascript-power-tools-redux-saga/
http://formidable.com/blog/2017/composition-patterns-in-redux-saga/
http://formidable.com/blog/2017/real-world-redux-saga-patterns/
A	fantastic	series	that	teaches	the	concepts,	implementation,	and	benefits	behind	Redux-Saga,	including	how
ES6	generators	are	used	to	control	function	flow,	how	sagas	can	be	composed	together	to	accomplish
concurrency,	and	practical	use	cases	for	sagas.

Exploring	Redux	Sagas
https://medium.com/onfido-tech/exploring-redux-sagas-cc1fca2015ee
An	excellent	article	that	explores	how	to	use	sagas	to	provide	a	glue	layer	to	implement	decoupled	business	logic
in	a	Redux	application.

Taming	Redux	with	Sagas
https://objectpartners.com/2017/11/20/taming-redux-with-sagas/
A	good	overview	of	Redux-Saga,	including	info	on	generator	functions,	use	cases	for	sagas,	using	sagas	to	deal
with	promises,	and	testing	sagas.

Reactive	Redux	State	with	RxJS
https://ivanjov.com/reactive-redux-state-with-rxjs/
Describes	the	concept	of	"Reactive	Programming"	and	the	RxJS	library,	and	shows	how	to	use	redux-observable
to	fetch	data,	along	with	examples	of	testing.

Using	redux-observable	to	handle	asynchronous	logic	in	Redux
https://medium.com/dailyjs/using-redux-observable-to-handle-asynchronous-logic-in-redux-d49194742522
An	extended	post	that	compares	a	thunk-based	implementation	of	handling	a	line-drawing	example	vs	an
observable-based	implementation.

Thinking	in	Redux
Deeper	looks	at	how	Redux	is	meant	to	be	used,	and	why	it	works	the	way	it	does

You	Might	Not	Need	Redux
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
Dan	Abramov	discusses	the	tradeoffs	involved	in	using	Redux.

Idiomatic	Redux:	The	Tao	of	Redux,	Part	1	-	Implementation	and	Intent
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-1/
A	deep	dive	into	how	Redux	actually	works,	the	constraints	it	asks	you	to	follow,	and	the	intent	behind	its	design
and	usage.

Learning	Resources

24

https://decembersoft.com/posts/what-is-the-right-way-to-do-asynchronous-operations-in-redux/
https://medium.com/react-native-training/redux-4-ways-95a130da0cdc
http://blog.isquaredsoftware.com/2017/01/idiomatic-redux-thoughts-on-thunks-sagas-abstraction-and-reusability/
http://formidable.com/blog/2017/javascript-power-tools-redux-saga/
http://formidable.com/blog/2017/composition-patterns-in-redux-saga/
http://formidable.com/blog/2017/real-world-redux-saga-patterns/
https://medium.com/onfido-tech/exploring-redux-sagas-cc1fca2015ee
https://objectpartners.com/2017/11/20/taming-redux-with-sagas/
https://ivanjov.com/reactive-redux-state-with-rxjs/
https://medium.com/dailyjs/using-redux-observable-to-handle-asynchronous-logic-in-redux-d49194742522
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-1/

Idiomatic	Redux:	The	Tao	of	Redux,	Part	2	-	Practice	and	Philosophy
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-2/
A	follow-up	look	at	why	common	Redux	usage	patterns	exist,	other	ways	that	Redux	can	be	used,	and	thoughts
on	the	pros	and	cons	of	those	different	patterns	and	approaches.

What's	So	Great	About	Redux?
https://medium.freecodecamp.org/whats-so-great-about-redux-ac16f1cc0f8b
https://storify.com/acemarke/redux-pros-cons-and-limitations
https://twitter.com/modernserf/status/886426115874717697
Deep	and	fascinating	analysis	of	how	Redux	compares	to	OOP	and	message-passing,	how	typical	Redux	usage
can	devolve	towards	Java-like	"setter"	functions	with	more	boilerplate,	and	something	of	a	plea	for	a	higher-level
"blessed"	abstraction	on	top	of	Redux	to	make	it	easier	to	work	with	and	learn	for	newbies.	Very	worth	reading.
The	author	originally	wrote	a	tweetstorm,	which	is	captured	in	the	Storify	link,	and	wrote	the	blog	post	to	expand
on	those	thoughts.	Finally,	he	followed	up	with	a	few	more	thoughts	on	abstract	vs	concrete	examples	in	another
shorter	tweet	thread.

Redux	Architecture
Patterns	and	practices	for	structuring	larger	Redux	applications

Avoiding	Accidental	Complexity	When	Structuring	Your	App	State
https://hackernoon.com/avoiding-accidental-complexity-when-structuring-your-app-state-6e6d22ad5e2a
An	excellent	set	of	guidelines	for	organizing	your	Redux	store	structure.

Redux	Step	by	Step:	A	Simple	and	Robust	Workflow	for	Real	Life	Apps
https://hackernoon.com/redux-step-by-step-a-simple-and-robust-workflow-for-real-life-apps-1fdf7df46092
A	follow-up	to	the	"Accidental	Complexity"	article,	discussing	principle

Things	I	Wish	I	Knew	About	Redux
https://medium.com/horrible-hacks/things-i-wish-i-knew-about-redux-9924abf2f9e0
https://www.reddit.com/r/javascript/comments/4taau2/things_i_wish_i_knew_about_redux/
A	number	of	excellent	tips	and	lessons	learned	after	building	an	app	with	Redux.	Includes	info	on	connecting
components,	selecting	data,	and	app/project	structure.	Additional	discussion	on	Reddit.

React+Redux:	Tips	and	Best	Practices	for	Clean,	Reliable,	&	Maintainable	Code
https://speakerdeck.com/goopscoop/react-plus-redux-tips-and-best-practices-for-clean-reliable-and-scalable-code
An	excellent	slideshow	with	a	wide	variety	of	tips	and	suggestions,	including	keeping	action	creators	simple	and
data	manipulation	in	reducers,	abstracting	away	API	calls,	avoiding	spreading	props,	and	more.

Redux	for	state	management	in	large	web	apps
https://www.mapbox.com/blog/redux-for-state-management-in-large-web-apps/
Excellent	discussion	and	examples	of	idiomatic	Redux	architecture,	and	how	Mapbox	applies	those	approaches
to	their	Mapbox	Studio	application.

Apps	and	Examples
React-Redux	RealWorld	Example:	TodoMVC	for	the	Real	World
https://github.com/GoThinkster/redux-review
An	example	full-stack	"real	world"	application	built	with	Redux.	Demos	a	Medium-like	social	blogging	site	that
includes	JWT	authentication,	CRUD,	favoriting	articles,	following	users,	routing,	and	more.	The	RealWorld	project
also	includes	many	other	implementations	of	the	front	and	back	ends	of	the	site,	specifically	intended	to	show
how	different	server	and	client	implementations	of	the	same	project	and	API	spec	compare	with	each	other.

Learning	Resources

25

http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-2/
https://medium.freecodecamp.org/whats-so-great-about-redux-ac16f1cc0f8b
https://storify.com/acemarke/redux-pros-cons-and-limitations
https://twitter.com/modernserf/status/886426115874717697
https://hackernoon.com/avoiding-accidental-complexity-when-structuring-your-app-state-6e6d22ad5e2a
https://hackernoon.com/redux-step-by-step-a-simple-and-robust-workflow-for-real-life-apps-1fdf7df46092
https://medium.com/horrible-hacks/things-i-wish-i-knew-about-redux-9924abf2f9e0
https://www.reddit.com/r/javascript/comments/4taau2/things_i_wish_i_knew_about_redux/
https://speakerdeck.com/goopscoop/react-plus-redux-tips-and-best-practices-for-clean-reliable-and-scalable-code
https://www.mapbox.com/blog/redux-for-state-management-in-large-web-apps/
https://github.com/GoThinkster/redux-review

Project	Mini-Mek
https://github.com/markerikson/project-minimek
A	sample	app	to	demonstrate	various	useful	Redux	techniques,	accompanying	the	"Practical	Redux"	blog	series
at	http://blog.isquaredsoftware.com/series/practical-redux

react-redux-yelp-clone
https://github.com/mohamed-ismat/react-redux-yelp-clone
An	adaptation	of	the	"Yelp	Clone"	app	by	FullStackReact.	It	extends	the	original	by	using	Redux	and	Redux	Saga
instead	of	local	state,	as	well	as	React	Router	v4,	styled-components,	and	other	modern	standards.	Based	on	the
React-Boilerplate	starter	kit.

WordPress-Calypso
https://github.com/Automattic/wp-calypso
The	new	JavaScript-	and	API-powered	WordPress.com

Sound-Redux
https://github.com/andrewngu/sound-redux
A	Soundcloud	client	built	with	React	/	Redux

Webamp
https://webamp.org
https://github.com/captbaritone/webamp
An	in-browser	recreation	of	Winamp2,	built	with	React	and	Redux.	Actually	plays	MP3s,	and	lets	you	load	in	local
MP3	files.

Tello
https://github.com/joshwcomeau/Tello
A	simple	and	delightful	way	to	track	and	manage	TV	shows

io-808
https://github.com/vincentriemer/io-808
An	attempt	at	a	fully	recreated	web-based	TR-808	drum	machine

Redux	Docs	Translations
中⽂⽂档	—	Chinese
繁體中⽂⽂件	—	Traditional	Chinese
Redux	in	Russian	—	Russian
Redux	en	Español	-	Spanish

Books
Redux	in	Action
https://www.manning.com/books/redux-in-action
A	comprehensive	book	that	covers	many	key	aspects	of	using	Redux,	including	the	basics	of	reducers	and
actions	and	use	with	React,	complex	middlewares	and	side	effects,	application	structure,	performance,	testing,
and	much	more.	Does	a	great	job	of	explaining	the	pros,	cons,	and	tradeoffs	of	many	approaches	to	using	Redux.
Personally	recommended	by	Redux	co-maintainer	Mark	Erikson.

The	Complete	Redux	Book
https://leanpub.com/redux-book
How	do	I	manage	a	large	state	in	production?	Why	do	I	need	store	enhancers?	What	is	the	best	way	to	handle

Learning	Resources

26

https://github.com/markerikson/project-minimek
http://blog.isquaredsoftware.com/series/practical-redux
https://github.com/mohamed-ismat/react-redux-yelp-clone
https://github.com/Automattic/wp-calypso
https://github.com/andrewngu/sound-redux
https://webamp.org
https://github.com/captbaritone/webamp
https://github.com/joshwcomeau/Tello
https://github.com/vincentriemer/io-808
http://camsong.github.io/redux-in-chinese/
https://github.com/chentsulin/redux
https://github.com/rajdee/redux-in-russian
http://es.redux.js.org/
https://www.manning.com/books/redux-in-action
https://leanpub.com/redux-book

form	validations?	Get	the	answers	to	all	these	questions	and	many	more	using	simple	terms	and	sample	code.
Learn	everything	you	need	to	use	Redux	to	build	complex	and	production-ready	web	applications.	(Note:	now
permanently	free!)

Taming	the	State	in	React
https://www.robinwieruch.de/learn-react-redux-mobx-state-management/
If	you	have	learned	React	with	the	previous	book	of	the	author	called	The	Road	to	learn	React,	Taming	the	State
in	React	will	be	the	perfect	blend	to	learn	about	basic	and	advanced	state	management	in	React.	You	will	start
out	with	learning	only	Redux	without	React.	Afterward,	the	book	shows	you	how	to	connect	Redux	to	your	React
application.	The	advanced	chapters	will	teach	you	about	normalization,	naming,	selectors	and	asynchronous
actions.	In	the	end,	you	will	set	up	and	build	a	real	world	application	with	React	and	Redux.

Courses
Modern	React	with	Redux,	by	Stephen	Grider	(paid)
https://www.udemy.com/react-redux/
Master	the	fundamentals	of	React	and	Redux	with	this	tutorial	as	you	develop	apps	with	React	Router,	Webpack,
and	ES6.	This	course	will	get	you	up	and	running	quickly,	and	teach	you	the	core	knowledge	you	need	to	deeply
understand	and	build	React	components	and	structure	applications	with	Redux.

Redux,	by	Tyler	McGinnis	(paid)
https://tylermcginnis.com/courses/redux/
When	learning	Redux,	you	need	to	learn	it	in	the	context	of	an	app	big	enough	to	see	the	benefits.	That's	why	this
course	is	huge.	A	better	name	might	be	"Real	World	Redux".	If	you're	sick	of	"todo	list"	Redux	tutorials,	you've
come	to	the	right	place.	In	this	course	we'll	talk	all	about	what	makes	Redux	special	for	managing	state	in	your
application.	We'll	build	an	actual	"real	world"	application	so	you	can	see	how	Redux	handles	edge	cases	like
optimistic	updates	and	error	handling.	We'll	also	cover	many	other	technologies	that	work	well	with	Redux,
Firebase,	and	CSS	Modules.

Learn	Redux,	by	Wes	Bos	(free)
https://learnredux.com/
A	video	course	that	walks	through	building	'Reduxstagram'	—	a	simple	photo	app	that	will	simplify	the	core	ideas
behind	Redux,	React	Router	and	React.js

More	Resources
React-Redux	Links	is	a	curated	list	of	high-quality	articles,	tutorials,	and	related	content	for	React,	Redux,	ES6,
and	more.
Redux	Ecosystem	Links	is	a	categorized	collection	of	Redux-related	libraries,	addons,	and	utilities.
Awesome	Redux	is	an	extensive	list	of	Redux-related	repositories.
DEV	Community	is	a	place	to	share	Redux	projects,	articles	and	tutorials	as	well	as	start	discussions	and	ask	for
feedback	on	Redux-related	topics.	Developers	of	all	skill-levels	are	welcome	to	take	part.

Learning	Resources

27

https://www.robinwieruch.de/learn-react-redux-mobx-state-management/
https://www.udemy.com/react-redux/
https://tylermcginnis.com/courses/redux/
https://learnredux.com/
https://github.com/markerikson/react-redux-links
https://github.com/markerikson/redux-ecosystem-links
https://github.com/xgrommx/awesome-redux
https://dev.to/t/redux

Ecosystem
Redux	is	a	tiny	library,	but	its	contracts	and	APIs	are	carefully	chosen	to	spawn	an	ecosystem	of	tools	and	extensions,
and	the	community	has	created	a	wide	variety	of	helpful	addons,	libraries,	and	tools.	You	don't	need	to	use	any	of
these	addons	to	use	Redux,	but	they	can	help	make	it	easier	to	implement	features	and	solve	problems	in	your
application.

For	an	extensive	catalog	of	libraries,	addons,	and	tools	related	to	Redux,	check	out	the	Redux	Ecosystem	Links	list.
Also,	the	React/Redux	Links	list	contains	tutorials	and	other	useful	resources	for	anyone	learning	React	or	Redux.

This	page	lists	some	of	the	Redux-related	addons	that	the	Redux	maintainers	have	vetted	personally,	or	that	have
shown	widespread	adoption	in	the	community.	Don't	let	this	discourage	you	from	trying	the	rest	of	them!	The
ecosystem	is	growing	too	fast,	and	we	have	a	limited	time	to	look	at	everything.	Consider	these	the	“staff	picks”,	and
don't	hesitate	to	submit	a	PR	if	you've	built	something	wonderful	with	Redux.

Table	of	Contents
Library	Integration	and	Bindings
Reducers

Reducer	Combination
Reducer	Composition
Higher-Order	Reducers

Actions
Utilities
Store

Change	Subscriptions
Batching
Persistence

Immutable	Data
Data	Structures
Immutable	Update	Utilities
Immutable/Redux	Interop

Side	Effects
Widely	Used
Promises

Middleware
Networks	and	Sockets
Async	Behavior
Analytics

Entities	and	Collections
Component	State	and	Encapsulation
Dev	Tools

Debuggers	and	Viewers
DevTools	Monitors
Logging
Mutation	Detection

Testing
Routing
Forms

Ecosystem

28

https://github.com/markerikson/redux-ecosystem-links
https://github.com/markerikson/react-redux-links

Higher-Level	Abstractions
Community	Conventions

Library	Integration	and	Bindings
reduxjs/react-redux
The	official	React	bindings	for	Redux,	maintained	by	the	Redux	team

angular-redux/ng-redux
Angular	1	bindings	for	Redux

angular-redux/store
Angular	2+	bindings	for	Redux

ember-redux/ember-redux
Ember	bindings	for	Redux

glimmer-redux/glimmer-redux
Redux	bindings	for	Ember's	Glimmer	component	engine

tur-nr/polymer-redux
Redux	bindings	for	Polymer

lastmjs/redux-store-element	Redux	bindings	for	custom	elements

Reducers

Reducer	Combination

ryo33/combineSectionReducers
An	expanded	version	of		combineReducers	,	which	allows	passing		state		as	a	third	argument	to	all	slice	reducers.

KodersLab/topologically-combine-reducers
A		combineReducers		variation	that	allows	defining	cross-slice	dependencies	for	ordering	and	data	passing

var	masterReducer	=	topologicallyCombineReducers(

		{	auth,	users,	todos	},

		//	define	the	dependency	tree

		{	auth:	['users'],	todos:	['auth']	}

)

Reducer	Composition

acdlite/reduce-reducers
Provides	sequential	composition	of	reducers	at	the	same	level

const	combinedReducer	=	combineReducers({	users,	posts,	comments	})

const	rootReducer	=	reduceReducers(combinedReducer,	otherTopLevelFeatureReducer)

mhelmer/redux-xforms
A	collection	of	composable	reducer	transformers

const	createByFilter	=	(predicate,	mapActionToKey)	=>

		compose(

				withInitialState({}),	//	inject	initial	state	as	{}

Ecosystem

29

https://github.com/reduxjs/react-redux
https://github.com/angular-redux/ng-redux
https://github.com/angular-redux/store
https://github.com/ember-redux/ember-redux
https://github.com/glimmer-redux/glimmer-redux
https://github.com/tur-nr/polymer-redux
https://github.com/lastmjs/redux-store-element
https://gitlab.com/ryo33/combine-section-reducers
https://github.com/KodersLab/topologically-combine-reducers
https://github.com/acdlite/reduce-reducers
https://github.com/mhelmer/redux-xforms

				withFilter(predicate),	//	let	through	if	action	has	filterName

				updateSlice(mapActionToKey),	//	update	a	single	key	in	the	state

				isolateSlice(mapActionToKey)	//	run	the	reducer	on	a	single	state	slice

)

adrienjt/redux-data-structures
Reducer	factory	functions	for	common	data	structures:	counters,	maps,	lists	(queues,	stacks),	sets

const	myCounter	=	counter({

		incrementActionTypes:	['INCREMENT'],

		decrementActionTypes:	['DECREMENT']

})

Higher-Order	Reducers

omnidan/redux-undo
Effortless	undo/redo	and	action	history	for	your	reducers

omnidan/redux-ignore
Ignore	redux	actions	by	array	or	filter	function

omnidan/redux-recycle
Reset	the	redux	state	on	certain	actions

ForbesLindesay/redux-optimist
A	reducer	enhancer	to	enable	type-agnostic	optimistic	updates

Actions
reduxactions/redux-actions
Flux	Standard	Action	utilities	for	Redux

const	increment	=	createAction('INCREMENT')

const	reducer	=	handleActions({	[increment]:	(state,	action)	=>	state	+	1	},	0)

const	store	=	createStore(reducer)

store.dispatch(increment())

BerkeleyTrue/redux-create-types
Creates	standard	and	async	action	types	based	on	namespaces

export	const	types	=	createTypes(

		['openModal',	createAsyncTypes('fetch')],

		'app'

)

//	{	openModal	:	"app.openModal",	fetch	:	{	start	:	"app.fetch.start",	complete:	'app.fetch.complete'	}	}

maxhallinan/kreighter
Generates	action	creators	based	on	types	and	expected	fields

const	formatTitle	=	(id,	title)	=>	({

		id,

		title:	toTitleCase(title)

})

const	updateBazTitle	=	fromType('UPDATE_BAZ_TITLE',	formatTitle)

updateBazTitle(1,	'foo	bar	baz')

//	->	{	type:	'UPDATE_BAZ_TITLE',	id:	1,	title:	'Foo	Bar	Baz',	}

Ecosystem

30

https://github.com/adrienjt/redux-data-structures
https://github.com/omnidan/redux-undo
https://github.com/omnidan/redux-ignore
https://github.com/omnidan/redux-recycle
https://github.com/ForbesLindesay/redux-optimist
https://github.com/reduxactions/redux-actions
https://github.com/BerkeleyTrue/redux-create-types
https://github.com/maxhallinan/kreighter

Utilities
reduxjs/reselect
Creates	composable	memoized	selector	functions	for	efficiently	deriving	data	from	the	store	state

const	taxSelector	=	createSelector(

		[subtotalSelector,	taxPercentSelector],

		(subtotal,	taxPercent)	=>	subtotal	*	(taxPercent	/	100)

)

paularmstrong/normalizr
Normalizes	nested	JSON	according	to	a	schema

const	user	=	new	schema.Entity('users')

const	comment	=	new	schema.Entity('comments',	{	commenter:	user	})

const	article	=	new	schema.Entity('articles',	{

		author:	user,

		comments:	[comment]

})

const	normalizedData	=	normalize(originalData,	article)

planttheidea/selectorator
Abstractions	over	Reselect	for	common	selector	use	cases

const	getBarBaz	=	createSelector(

		['foo.bar',	'baz'],

		(bar,	baz)	=>	`${bar}	${baz}`

)

getBarBaz({	foo:	{	bar:	'a'	},	baz:	'b'	})	//	"a	b"

Store

Change	Subscriptions

jprichardson/redux-watch
Watch	for	state	changes	based	on	key	paths	or	selectors

let	w	=	watch(()	=>	mySelector(store.getState()))

store.subscribe(

		w((newVal,	oldVal)	=>	{

				console.log(newval,	oldVal)

		})

)

ashaffer/redux-subscribe
Centralized	subscriptions	to	state	changes	based	on	paths

store.dispatch(subscribe("users.byId.abcd",	"subscription1",	()	=>	{});

Batching

tappleby/redux-batched-subscribe
Store	enhancer	that	can	debounce	subscription	notifications

const	debounceNotify	=	_.debounce(notify	=>	notify())

const	store	=	createStore(

Ecosystem

31

https://github.com/reduxjs/reselect
https://github.com/paularmstrong/normalizr
https://github.com/planttheidea/selectorator
https://github.com/jprichardson/redux-watch
https://github.com/ashaffer/redux-subscribe
https://github.com/tappleby/redux-batched-subscribe

		reducer,

		initialState,

		batchedSubscribe(debounceNotify)

)

manaflair/redux-batch
Store	enhancer	that	allows	dispatching	arrays	of	actions

const	store	=	createStore(reducer,	reduxBatch)

store.dispatch([{	type:	'INCREMENT'	},	{	type:	'INCREMENT'	}])

laysent/redux-batch-actions-enhancer
Store	enhancer	that	accepts	batched	actions

const	store	=	createStore(reducer,	initialState,	batch().enhancer)

store.dispatch(createAction({	type:	'INCREMENT'	},	{	type:	'INCREMENT'	}))

tshelburne/redux-batched-actions
Higher-order	reducer	that	handles	batched	actions

const	store	=	createStore(enableBatching(reducer),	initialState)

store.dispatch(batchActions([{	type:	'INCREMENT'	},	{	type:	'INCREMENT'	}]))

Persistence

rt2zz/redux-persist
Persist	and	rehydrate	a	Redux	store,	with	many	extensible	options

const	store	=	createStore(reducer,	autoRehydrate())

persistStore(store)

react-stack/redux-storage
Persistence	layer	for	Redux	with	flexible	backends

const	reducer	=	storage.reducer(combineReducers(reducers))

const	engine	=	createEngineLocalStorage('my-save-key')

const	storageMiddleware	=	storage.createMiddleware(engine)

const	store	=	createStore(reducer,	applyMiddleware(storageMiddleware))

redux-offline/redux-offline
Persistent	store	for	Offline-First	apps,	with	support	for	optimistic	UIs

const	store	=	createStore(reducer,	offline(offlineConfig))

store.dispatch({

		type:	'FOLLOW_USER_REQUEST',

		meta:	{	offline:	{	effect:	{},	commit:	{},	rollback:	{}	}	}

})

Immutable	Data

Data	Structures

facebook/immutable-js
Immutable	persistent	data	collections	for	Javascript

Ecosystem

32

https://github.com/manaflair/redux-batch
https://github.com/laysent/redux-batch-actions-enhancer
https://github.com/tshelburne/redux-batched-actions
https://github.com/rt2zz/redux-persist
https://github.com/react-stack/redux-storage
https://github.com/redux-offline/redux-offline
https://github.com/facebook/immutable-js

const	map1	=	Map({	a:	1,	b:	2,	c:	3	})

const	map2	=	map1.set('b',	50)

map1.get('b')	//	2

map2.get('b')	//	50

rtfeldman/seamless-immutable
Frozen	immutable	arrays/objects,	backwards-compatible	with	JS

const	array	=	Immutable(['totally',	'immutable',	{	a:	42	}])

array[0]	=	'edited'	//	does	nothing

planttheidea/crio
Immutable	JS	objects	with	a	natural	API

const	foo	=	crio(['foo'])

const	fooBar	=	foo.push('bar')	//	new	array:	['foo',	'bar']

aearly/icepick
Utilities	for	treating	frozen	JS	objects	as	persistent	immutable	collections.

const	newObj	=	icepick.assocIn({	c:	{	d:	'bar'	}	},	['c',	'd'],	'baz')

const	obj3	=	icepicke.merge(obj1,	obj2)

Immutable	Update	Utilities

mweststrate/immer
Immutable	updates	with	normal	mutative	code,	using	Proxies

const	nextState	=	produce(baseState,	draftState	=>	{

		draftState.push({	todo:	'Tweet	about	it'	})

		draftState[1].done	=	true

})

kolodny/immutability-helper
A	drop-in	replacement	for	react-addons-update

const	newData	=	update(myData,	{

		x:	{	y:	{	z:	{	$set:	7	}	}	},

		a:	{	b:	{	$push:	[9]	}	}

})

mariocasciaro/object-path-immutable
Simpler	alternative	to	immutability-helpers	and	Immutable.js

const	newObj	=	immutable(obj)

		.set('a.b',	'f')

		.del(['a',	'c',	0])

		.value()

debitoor/dot-prop-immutable
Immutable	version	of	the	dot-prop	lib,	with	some	extensions

const	newState	=	dotProp.set(state,	`todos.${index}.complete`,	true)

const	endOfArray	=	dotProp.get(obj,	'foo.$end')

Ecosystem

33

https://github.com/rtfeldman/seamless-immutable
https://github.com/planttheidea/crio
https://github.com/aearly/icepick
https://github.com/mweststrate/immer
https://github.com/kolodny/immutability-helper
https://github.com/mariocasciaro/object-path-immutable
https://github.com/debitoor/dot-prop-immutable

Immutable/Redux	Interop

gajus/redux-immutable
combineReducers	equivalent	that	works	with	Immutable.js	Maps

const	initialState	=	Immutable.Map()

const	rootReducer	=	combineReducers({})

const	store	=	createStore(rootReducer,	initialState)

eadmundo/redux-seamless-immutable
combineReducers	equivalent	that	works	with	seamless-immutable	values

import	{	combineReducers	}	from	'redux-seamless-immutable';

const	rootReducer	=	combineReducers({	userReducer,	posts

Side	Effects

Widely	Used

gaearon/redux-thunk
Dispatch	functions,	which	are	called	and	given		dispatch		and		getState		as	parameters.	This	acts	as	a	loophole	for
AJAX	calls	and	other	async	behavior.

Best	for:	getting	started,	simple	async	and	complex	synchronous	logic.

function	fetchData(someValue)	{

				return	(dispatch,	getState)	=>	{

								dispatch({type	:	"REQUEST_STARTED"});

								myAjaxLib.post("/someEndpoint",	{data	:	someValue})

												.then(response	=>	dispatch({type	:	"REQUEST_SUCCEEDED",	payload	:	response})

												.catch(error	=>	dispatch({type	:	"REQUEST_FAILED",	error	:	error});

				};

}

function	addTodosIfAllowed(todoText)	{

				return	(dispatch,	getState)	=>	{

								const	state	=	getState();

								if(state.todos.length	<	MAX_TODOS)	{

												dispatch({type	:	"ADD_TODO",	text	:	todoText});

								}

				}

}

redux-saga/redux-saga
Handle	async	logic	using	synchronous-looking	generator	functions.	Sagas	return	descriptions	of	effects,	which	are
executed	by	the	saga	middleware,	and	act	like	"background	threads"	for	JS	applications.

Best	for:	complex	async	logic,	decoupled	workflows

function*	fetchData(action)	{

		const	{	someValue	}	=	action

		try	{

				const	response	=	yield	call(myAjaxLib.post,	'/someEndpoint',	{

						data:	someValue

				})

				yield	put({	type:	'REQUEST_SUCCEEDED',	payload:	response	})

		}	catch	(error)	{

				yield	put({	type:	'REQUEST_FAILED',	error:	error	})

		}

Ecosystem

34

https://github.com/gajus/redux-immutable
https://github.com/eadmundo/redux-seamless-immutable
https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga

}

function*	addTodosIfAllowed(action)	{

		const	{	todoText	}	=	action

		const	todos	=	yield	select(state	=>	state.todos)

		if	(todos.length	<	MAX_TODOS)	{

				yield	put({	type:	'ADD_TODO',	text:	todoText	})

		}

}

redux-observable/redux-observable

Handle	async	logic	using	RxJS	observable	chains	called	"epics".	Compose	and	cancel	async	actions	to	create	side
effects	and	more.

Best	for:	complex	async	logic,	decoupled	workflows

const	loginRequestEpic	=	action$	=>

		action$

				.ofType(LOGIN_REQUEST)

				.mergeMap(({	payload:	{	username,	password	}	})	=>

						Observable.from(postLogin(username,	password))

								.map(loginSuccess)

								.catch(loginFailure)

)

const	loginSuccessfulEpic	=	action$	=>

		action$

				.ofType(LOGIN_SUCCESS)

				.delay(2000)

				.mergeMap(({	payload:	{	msg	}	})	=>	showMessage(msg))

const	rootEpic	=	combineEpics(loginRequestEpic,	loginSuccessfulEpic)

redux-loop/redux-loop

A	port	of	the	Elm	Architecture	to	Redux	that	allows	you	to	sequence	your	effects	naturally	and	purely	by	returning
them	from	your	reducers.	Reducers	now	return	both	a	state	value	and	a	side	effect	description.

Best	for:	trying	to	be	as	much	like	Elm	as	possible	in	Redux+JS

export	const	reducer	=	(state	=	{},	action)	=>	{

		switch	(action.type)	{

				case	ActionType.LOGIN_REQUEST:

						const	{	username,	password	}	=	action.payload

						return	loop(

								{	pending:	true	},

								Effect.promise(loginPromise,	username,	password)

)

				case	ActionType.LOGIN_SUCCESS:

						const	{	user,	msg	}	=	action.payload

						return	loop(

								{	pending:	false,	user	},

								Effect.promise(delayMessagePromise,	msg,	2000)

)

				case	ActionType.LOGIN_FAILURE:

						return	{	pending:	false,	err:	action.payload	}

				default:

						return	state

		}

}

jeffbski/redux-logic

Side	effects	lib	built	with	observables,	but	allows	use	of	callbacks,	promises,	async/await,	or	observables.	Provides
declarative	processing	of	actions.

Ecosystem

35

https://github.com/redux-observable/redux-observable
https://github.com/redux-loop/redux-loop
https://github.com/jeffbski/redux-logic

Best	for:	very	decoupled	async	logic

const	loginLogic	=	createLogic({

		type:	Actions.LOGIN_REQUEST,

		process({	getState,	action	},	dispatch,	done)	{

				const	{	username,	password	}	=	action.payload

				postLogin(username,	password)

						.then(

								({	user,	msg	})	=>	{

										dispatch(loginSucceeded(user))

										setTimeout(()	=>	dispatch(showMessage(msg)),	2000)

								},

								err	=>	dispatch(loginFailure(err))

)

						.then(done)

		}

})

Promises

acdlite/redux-promise
Dispatch	promises	as	action	payloads,	and	have	FSA-compliant	actions	dispatched	as	the	promise	resolves	or
rejects.

dispatch({	type:	'FETCH_DATA',	payload:	myAjaxLib.get('/data')	})

//	will	dispatch	either	{type	:	"FETCH_DATA",	payload	:	response}	if	resolved,

//	or	dispatch	{type	:	"FETCH_DATA",	payload	:	error,	error	:	true}	if	rejected

lelandrichardson/redux-pack
Sensible,	declarative,	convention-based	promise	handling	that	guides	users	in	a	good	direction	without	exposing	the
full	power	of	dispatch.

dispatch({type	:	"FETCH_DATA",	payload	:	myAjaxLib.get("/data")	});

//	in	a	reducer:

								case	"FETCH_DATA":	=

												return	handle(state,	action,	{

																start:	prevState	=>	({

																		...prevState,

																		isLoading:	true,

																		fooError:	null

																}),

																finish:	prevState	=>	({	...prevState,	isLoading:	false	}),

																failure:	prevState	=>	({	...prevState,	fooError:	payload	}),

																success:	prevState	=>	({	...prevState,	foo:	payload	}),

												});

Middleware

Networks	and	Sockets

svrcekmichal/redux-axios-middleware
Fetches	data	with	Axios	and	dispatches	start/success/fail	actions

export	const	loadCategories()	=>	({	type:	'LOAD',	payload:	{	request	:	{	url:	'/categories'}	}	});

Ecosystem

36

https://github.com/acdlite/redux-promise
https://github.com/lelandrichardson/redux-pack
https://github.com/svrcekmichal/redux-axios-middleware

agraboso/redux-api-middleware
Reads	API	call	actions,	fetches,	and	dispatches	FSAs

const	fetchUsers	=	()	=>	({

		[CALL_API]:	{

				endpoint:	'http://www.example.com/api/users',

				method:	'GET',

				types:	['REQUEST',	'SUCCESS',	'FAILURE']

		}

})

itaylor/redux-socket.io
An	opinionated	connector	between	socket.io	and	redux.

const	store	=	createStore(reducer,	applyMiddleware(socketIoMiddleware))

store.dispatch({	type:	'server/hello',	data:	'Hello!'	})

tiberiuc/redux-react-firebase
Integration	between	Firebase,	React,	and	Redux

Async	Behavior

rt2zz/redux-action-buffer
Buffers	all	actions	into	a	queue	until	a	breaker	condition	is	met,	at	which	point	the	queue	is	released

wyze/redux-debounce
FSA-compliant	middleware	for	Redux	to	debounce	actions.

mathieudutour/redux-queue-offline
Queue	actions	when	offline	and	dispatch	them	when	getting	back	online.

Analytics

rangle/redux-beacon
Integrates	with	any	analytics	services,	can	track	while	offline,	and	decouples	analytics	logic	from	app	logic

hyperlab/redux-insights
Analytics	and	tracking	with	an	easy	API	for	writing	your	own	adapters

markdalgleish/redux-analytics
Watches	for	Flux	Standard	Actions	with	meta	analytics	values	and	processes	them

Entities	and	Collections
tommikaikkonen/redux-orm
A	simple	immutable	ORM	to	manage	relational	data	in	your	Redux	store.

Versent/redux-crud
Convention-based	actions	and	reducers	for	CRUD	logic

kwelch/entities-reducer
A	higher-order	reducer	that	handles	data	from	Normalizr

amplitude/redux-query
Declare	colocated	data	dependencies	with	your	components,	run	queries	when	components	mount,	perform	optimistic
updates,	and	trigger	server	changes	with	Redux	actions.

Ecosystem

37

https://github.com/agraboso/redux-api-middleware
https://github.com/itaylor/redux-socket.io
https://github.com/tiberiuc/redux-react-firebase
https://github.com/rt2zz/redux-action-buffer
https://github.com/wyze/redux-debounce
https://github.com/mathieudutour/redux-queue-offline
https://github.com/rangle/redux-beacon
https://github.com/hyperlab/redux-insights
https://github.com/markdalgleish/redux-analytics
https://github.com/tommikaikkonen/redux-orm
https://github.com/Versent/redux-crud
https://github.com/kwelch/entities-reducer
https://github.com/amplitude/redux-query

cantierecreativo/redux-bees
Declarative	JSON-API	interaction	that	normalizes	data,	with	a	React	HOC	that	can	run	queries

GetAmbassador/redux-clerk
Async	CRUD	handling	with	normalization,	optimistic	updates,	sync/async	action	creators,	selectors,	and	an
extendable	reducer.

shoutem/redux-io
JSON-API	abstraction	with	async	CRUD,	normalization,	optimistic	updates,	caching,	data	status,	and	error	handling.

jmeas/redux-resource
A	tiny	but	powerful	system	for	managing	'resources':	data	that	is	persisted	to	remote	servers.

Component	State	and	Encapsulation
tonyhb/redux-ui
"Block-level	scoping"	for	UI	state.	Decorated	components	declare	data	fields,	which	become	props	and	can	be
updated	by	nested	children.

@ui({

		key:	'some-name',

		state:	{	uiVar1:	'',	uiVar2:	(props,	state)	=>	state.someValue	},

		reducer:	(state,	action)	=>	{}

})

class	YourComponent	extends	React.Component	{}

threepointone/redux-react-local
Local	component	state	in	Redux,	with	handling	for	component	actions

@local({

		ident:	'counter',	initial:	0,	reducer	:	(state,	action)	=>	action.me	?	state	+	1	:	state	}

})

class	Counter	extends	React.Component	{

epeli/lean-redux
Makes	component	state	in	Redux	as	easy	as	setState

const	DynamicCounters	=	connectLean(

				scope:	"dynamicCounters",

				getInitialState()	=>	({counterCount	:	1}),

				addCounter,	removeCounter

)(CounterList);

ioof-holdings/redux-subspace
Creates	isolated	"sub-stores"	for	decoupled	micro	front-ends,	with	integration	for	React,	sagas,	and	observables

const	reducer	=	combineReducers({

		subApp1:	namespaced('subApp1')(counter),

		subApp2:	namespaced('subApp2')(counter)

})

const	subApp1Store	=	subspace(state	=>	state.subApp1,	'subApp1')(store)

const	subApp2Store	=	subspace(state	=>	state.subApp2,	'subApp2')(store)

subApp1Store.dispatch({	type:	'INCREMENT'	})

console.log('store	state:',	store.getState())	//	{	"subApp1":	{	value:	2	},	"subApp2":	{	value:	1	}	}

Ecosystem

38

https://github.com/cantierecreativo/redux-bees
https://github.com/GetAmbassador/redux-clerk
https://github.com/shoutem/redux-io
https://github.com/jmeas/redux-resource
https://github.com/tonyhb/redux-ui
https://github.com/threepointone/redux-react-local
https://github.com/epeli/lean-redux
https://github.com/ioof-holdings/redux-subspace

DataDog/redux-doghouse
Aims	to	make	reusable	components	easier	to	build	with	Redux	by	scoping	actions	and	reducers	to	a	particular
instance	of	a	component.

const	scopeableActions	=	new	ScopedActionFactory(actionCreators)

const	actionCreatorsScopedToA	=	scopeableActions.scope('a')

actionCreatorsScopedToA.foo('bar')	//{	type:	SET_FOO,	value:	'bar',	scopeID:	'a'	}

const	boundScopeableActions	=	bindScopedActionFactories(

		scopeableActions,

		store.dispatch

)

const	scopedReducers	=	scopeReducers(reducers)

Dev	Tools

Debuggers	and	Viewers

reduxjs/redux-devtools

Dan	Abramov's	original	Redux	DevTools	implementation,	built	for	in-app	display	of	state	and	time-travel	debugging

zalmoxisus/redux-devtools-extension

Mihail	Diordiev's	browser	extension,	which	bundles	multiple	state	monitor	views	and	adds	integration	with	the
browser's	own	dev	tools

infinitered/reactotron

A	cross-platform	Electron	app	for	inspecting	React	and	React	Native	apps,	including	app	state,	API	requests,	perf,
errors,	sagas,	and	action	dispatching.

DevTools	Monitors

Log	Monitor
The	default	monitor	for	Redux	DevTools	with	a	tree	view

Dock	Monitor
A	resizable	and	movable	dock	for	Redux	DevTools	monitors

Slider	Monitor
A	custom	monitor	for	Redux	DevTools	to	replay	recorded	Redux	actions

Inspector
A	custom	monitor	for	Redux	DevTools	that	lets	you	filter	actions,	inspect	diffs,	and	pin	deep	paths	in	the	state	to
observe	their	changes

Diff	Monitor
A	monitor	for	Redux	DevTools	that	diffs	the	Redux	store	mutations	between	actions

Filterable	Log	Monitor
Filterable	tree	view	monitor	for	Redux	DevTools

Chart	Monitor
A	chart	monitor	for	Redux	DevTools

Filter	Actions
Redux	DevTools	composable	monitor	with	the	ability	to	filter	actions

Ecosystem

39

https://github.com/DataDog/redux-doghouse
https://github.com/reduxjs/redux-devtools
https://github.com/zalmoxisus/redux-devtools-extension
https://github.com/infinitered/reactotron
https://github.com/reduxjs/redux-devtools-log-monitor
https://github.com/reduxjs/redux-devtools-dock-monitor
https://github.com/calesce/redux-slider-monitor
https://github.com/alexkuz/redux-devtools-inspector
https://github.com/whetstone/redux-devtools-diff-monitor
https://github.com/bvaughn/redux-devtools-filterable-log-monitor/
https://github.com/romseguy/redux-devtools-chart-monitor
https://github.com/zalmoxisus/redux-devtools-filter-actions

Logging

evgenyrodionov/redux-logger
Logging	middleware	that	shows	actions,	states,	and	diffs

inakianduaga/redux-state-history
Enhancer	that	provides	time-travel	and	efficient	action	recording	capabilities,	including	import/export	of	action	logs	and
action	playback.

joshwcomeau/redux-vcr
Record	and	replay	user	sessions	in	real-time

socialtables/redux-unhandled-action
Warns	about	actions	that	produced	no	state	changes	in	development

Mutation	Detection

leoasis/redux-immutable-state-invariant
Middleware	that	throws	an	error	when	you	try	to	mutate	your	state	either	inside	a	dispatch	or	between	dispatches.

flexport/mutation-sentinel
Helps	you	deeply	detect	mutations	at	runtime	and	enforce	immutability	in	your	codebase.

mmahalwy/redux-pure-connect
Check	and	log	whether	react-redux's	connect	method	is	passed		mapState		functions	that	create	impure	props.

Testing
arnaudbenard/redux-mock-store
A	mock	store	that	saves	dispatched	actions	in	an	array	for	assertions

Workable/redux-test-belt
Extends	the	store	API	to	make	it	easier	assert,	isolate,	and	manipulate	the	store

conorhastings/redux-test-recorder
Middleware	to	automatically	generate	reducers	tests	based	on	actions	in	the	app

wix/redux-testkit
Complete	and	opinionated	testkit	for	testing	Redux	projects	(reducers,	selectors,	actions,	thunks)

jfairbank/redux-saga-test-plan
Makes	integration	and	unit	testing	of	sagas	a	breeze

Routing
supasate/connected-react-router	Synchronize	React	Router	4	state	with	your	Redux	store.

FormidableLabs/redux-little-router
A	tiny	router	for	Redux	applications	that	lets	the	URL	do	the	talking

faceyspacey/redux-first-router
Seamless	Redux-first	routing.	Think	of	your	app	in	states,	not	routes,	not	components,	while	keeping	the	address	bar
in	sync.	Everything	is	state.	Connect	your	components	and	just	dispatch	flux	standard	actions.

Ecosystem

40

https://github.com/evgenyrodionov/redux-logger
https://github.com/inakianduaga/redux-state-history
https://github.com/joshwcomeau/redux-vcr
https://github.com/socialtables/redux-unhandled-action
https://github.com/leoasis/redux-immutable-state-invariant
https://github.com/flexport/mutation-sentinel
https://github.com/mmahalwy/redux-pure-connect
https://github.com/arnaudbenard/redux-mock-store
https://github.com/Workable/redux-test-belt
https://github.com/conorhastings/redux-test-recorder
https://github.com/wix/redux-testkit
https://github.com/jfairbank/redux-saga-test-plan
https://github.com/supasate/connected-react-router
https://github.com/FormidableLabs/redux-little-router
https://github.com/faceyspacey/redux-first-router

Forms
erikras/redux-form
A	full-featured	library	to	enable	a	React	HTML	form	to	store	its	state	in	Redux.

davidkpiano/react-redux-form
React	Redux	Form	is	a	collection	of	reducer	creators	and	action	creators	that	make	implementing	even	the	most
complex	and	custom	forms	with	React	and	Redux	simple	and	performant.

Higher-Level	Abstractions
keajs/kea
An	abstraction	over	Redux,	Redux-Saga	and	Reselect.	Provides	a	framework	for	your	app’s	actions,	reducers,
selectors	and	sagas.	It	empowers	Redux,	making	it	as	simple	to	use	as	setState.	It	reduces	boilerplate	and
redundancy,	while	retaining	composability.

jumpsuit/jumpstate
A	simplified	layer	over	Redux.	No	action	creators	or	explicit	dispatching,	with	a	built-in	simple	side	effects	system.

TheComfyChair/redux-scc
Takes	a	defined	structure	and	uses	'behaviors'	to	create	a	set	of	actions,	reducer	responses	and	selectors.

Bloomca/redux-tiles
Provides	minimal	abstraction	on	top	of	Redux,	to	allow	easy	composability,	easy	async	requests,	and	sane	testability.

Community	Conventions
Flux	Standard	Action
A	human-friendly	standard	for	Flux	action	objects

Canonical	Reducer	Composition
An	opinionated	standard	for	nested	reducer	composition

Ducks:	Redux	Reducer	Bundles
A	proposal	for	bundling	reducers,	action	types	and	actions

Ecosystem

41

https://github.com/erikras/redux-form
https://github.com/davidkpiano/react-redux-form
https://github.com/keajs/kea
https://github.com/jumpsuit/jumpstate
https://github.com/TheComfyChair/redux-scc
https://github.com/Bloomca/redux-tiles
https://github.com/acdlite/flux-standard-action
https://github.com/gajus/canonical-reducer-composition
https://github.com/erikras/ducks-modular-redux

Examples
Redux	is	distributed	with	a	few	examples	in	its	source	code.	Most	of	these	examples	are	also	on	CodeSandbox,	an
online	editor	that	lets	you	play	with	the	examples	online.

Counter	Vanilla
Run	the	Counter	Vanilla	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/counter-vanilla

open	index.html

Or	check	out	the	sandbox:

It	does	not	require	a	build	system	or	a	view	framework	and	exists	to	show	the	raw	Redux	API	used	with	ES5.

Counter
Run	the	Counter	example:

git	clone	https://github.com/reduxjs/redux.git

Examples

42

https://github.com/reduxjs/redux/tree/master/examples
https://codesandbox.io
https://github.com/reduxjs/redux/tree/master/examples/counter-vanilla
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/counter-vanilla
https://github.com/reduxjs/redux/tree/master/examples/counter

cd	redux/examples/counter

npm	install

npm	start

Or	check	out	the	sandbox:

This	is	the	most	basic	example	of	using	Redux	together	with	React.	For	simplicity,	it	re-renders	the	React	component
manually	when	the	store	changes.	In	real	projects,	you	will	likely	want	to	use	the	highly	performant	React	Redux
bindings	instead.

This	example	includes	tests.

Todos
Run	the	Todos	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/todos

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

43

https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/counter
https://github.com/reduxjs/react-redux
https://github.com/reduxjs/redux/tree/master/examples/todos
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos

This	is	the	best	example	to	get	a	deeper	understanding	of	how	the	state	updates	work	together	with	components	in
Redux.	It	shows	how	reducers	can	delegate	handling	actions	to	other	reducers,	and	how	you	can	use	React	Redux	to
generate	container	components	from	your	presentational	components.

This	example	includes	tests.

Todos	with	Undo
Run	the	Todos	with	Undo	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/todos-with-undo

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

44

https://github.com/reduxjs/react-redux
https://github.com/reduxjs/redux/tree/master/examples/todos-with-undo
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos-with-undo

This	is	a	variation	on	the	previous	example.	It	is	almost	identical,	but	additionally	shows	how	wrapping	your	reducer
with	Redux	Undo	lets	you	add	a	Undo/Redo	functionality	to	your	app	with	a	few	lines	of	code.

Todos	w/	Flow
Run	the	Todos	w/	Flow	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/todos-flow

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

45

https://github.com/omnidan/redux-undo
https://github.com/reduxjs/redux/tree/master/examples/todos-flow
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos-flow

This	is	like	the	previous	Todos	examples,	but	shows	how	to	use	Redux	in	conjunction	with	Flow.

TodoMVC
Run	the	TodoMVC	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/todomvc

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

46

https://flow.org/
https://github.com/reduxjs/redux/tree/master/examples/todomvc
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todomvc

This	is	the	classical	TodoMVC	example.	It's	here	for	the	sake	of	comparison,	but	it	covers	the	same	points	as	the
Todos	example.

This	example	includes	tests.

Shopping	Cart
Run	the	Shopping	Cart	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/shopping-cart

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

47

http://todomvc.com/
https://github.com/reduxjs/redux/tree/master/examples/shopping-cart
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/shopping-cart

This	example	shows	important	idiomatic	Redux	patterns	that	become	important	as	your	app	grows.	In	particular,	it
shows	how	to	store	entities	in	a	normalized	way	by	their	IDs,	how	to	compose	reducers	on	several	levels,	and	how	to
define	selectors	alongside	the	reducers	so	the	knowledge	about	the	state	shape	is	encapsulated.	It	also	demonstrates
logging	with	Redux	Logger	and	conditional	dispatching	of	actions	with	Redux	Thunk	middleware.

Tree	View
Run	the	Tree	View	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/tree-view

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

48

https://github.com/fcomb/redux-logger
https://github.com/gaearon/redux-thunk
https://github.com/reduxjs/redux/tree/master/examples/tree-view
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/tree-view

This	example	demonstrates	rendering	a	deeply	nested	tree	view	and	representing	its	state	in	a	normalized	form	so	it
is	easy	to	update	from	reducers.	Good	rendering	performance	is	achieved	by	the	container	components	granularly
subscribing	only	to	the	tree	nodes	that	they	render.

This	example	includes	tests.

Async
Run	the	Async	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/async

npm	install

npm	start

Or	check	out	the	sandbox:

Examples

49

https://github.com/reduxjs/redux/tree/master/examples/async
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/async

This	example	includes	reading	from	an	asynchronous	API,	fetching	data	in	response	to	user	input,	showing	loading
indicators,	caching	the	response,	and	invalidating	the	cache.	It	uses	Redux	Thunk	middleware	to	encapsulate
asynchronous	side	effects.

Universal
Run	the	Universal	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/universal

npm	install

npm	start

This	is	a	basic	demonstration	of	server	rendering	with	Redux	and	React.	It	shows	how	to	prepare	the	initial	store	state
on	the	server,	and	pass	it	down	to	the	client	so	the	client	store	can	boot	up	from	an	existing	state.

Real	World
Run	the	Real	World	example:

git	clone	https://github.com/reduxjs/redux.git

cd	redux/examples/real-world

npm	install

npm	start

Examples

50

https://github.com/gaearon/redux-thunk
https://github.com/reduxjs/redux/tree/master/examples/universal
https://github.com/reduxjs/redux/tree/master/examples/real-world

Or	check	out	the	sandbox:

This	is	the	most	advanced	example.	It	is	dense	by	design.	It	covers	keeping	fetched	entities	in	a	normalized	cache,
implementing	a	custom	middleware	for	API	calls,	rendering	partially	loaded	data,	pagination,	caching	responses,
displaying	error	messages,	and	routing.	Additionally,	it	includes	Redux	DevTools.

More	Examples
You	can	find	more	examples	in	the	Redux	Apps	and	Examples	page	of	the	Redux	Addons	Catalog.

Examples

51

https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/real-world
https://github.com/markerikson/redux-ecosystem-links/blob/master/apps-and-examples.md
https://github.com/markerikson/redux-ecosystem-links

Basics
Don't	be	fooled	by	all	the	fancy	talk	about	reducers,	middleware,	store	enhancers—Redux	is	incredibly	simple.	If
you've	ever	built	a	Flux	application,	you	will	feel	right	at	home.	If	you're	new	to	Flux,	it's	easy	too!

In	this	guide,	we'll	walk	through	the	process	of	creating	a	simple	Todo	app.

Actions
Reducers
Store
Data	Flow
Usage	with	React
Example:	Todo	List

Basics

52

Actions
First,	let's	define	some	actions.

Actions	are	payloads	of	information	that	send	data	from	your	application	to	your	store.	They	are	the	only	source	of
information	for	the	store.	You	send	them	to	the	store	using		store.dispatch()	.

Here's	an	example	action	which	represents	adding	a	new	todo	item:

const	ADD_TODO	=	'ADD_TODO'

{

		type:	ADD_TODO,

		text:	'Build	my	first	Redux	app'

}

Actions	are	plain	JavaScript	objects.	Actions	must	have	a		type		property	that	indicates	the	type	of	action	being
performed.	Types	should	typically	be	defined	as	string	constants.	Once	your	app	is	large	enough,	you	may	want	to
move	them	into	a	separate	module.

import	{	ADD_TODO,	REMOVE_TODO	}	from	'../actionTypes'

Note	on	Boilerplate

You	don't	have	to	define	action	type	constants	in	a	separate	file,	or	even	to	define	them	at	all.	For	a	small
project,	it	might	be	easier	to	just	use	string	literals	for	action	types.	However,	there	are	some	benefits	to
explicitly	declaring	constants	in	larger	codebases.	Read	Reducing	Boilerplate	for	more	practical	tips	on	keeping
your	codebase	clean.

Other	than		type	,	the	structure	of	an	action	object	is	really	up	to	you.	If	you're	interested,	check	out	Flux	Standard
Action	for	recommendations	on	how	actions	could	be	constructed.

We'll	add	one	more	action	type	to	describe	a	user	ticking	off	a	todo	as	completed.	We	refer	to	a	particular	todo	by
	index		because	we	store	them	in	an	array.	In	a	real	app,	it	is	wiser	to	generate	a	unique	ID	every	time	something	new
is	created.

{

		type:	TOGGLE_TODO,

		index:	5

}

It's	a	good	idea	to	pass	as	little	data	in	each	action	as	possible.	For	example,	it's	better	to	pass		index		than	the	whole
todo	object.

Finally,	we'll	add	one	more	action	type	for	changing	the	currently	visible	todos.

{

		type:	SET_VISIBILITY_FILTER,

		filter:	SHOW_COMPLETED

}

Action	Creators

Actions

53

https://github.com/acdlite/flux-standard-action

Action	creators	are	exactly	that—functions	that	create	actions.	It's	easy	to	conflate	the	terms	“action”	and	“action
creator”,	so	do	your	best	to	use	the	proper	term.

In	Redux,	action	creators	simply	return	an	action:

function	addTodo(text)	{

		return	{

				type:	ADD_TODO,

				text

		}

}

This	makes	them	portable	and	easy	to	test.

In	traditional	Flux,	action	creators	often	trigger	a	dispatch	when	invoked,	like	so:

function	addTodoWithDispatch(text)	{

		const	action	=	{

				type:	ADD_TODO,

				text

		}

		dispatch(action)

}

In	Redux	this	is	not	the	case.
Instead,	to	actually	initiate	a	dispatch,	pass	the	result	to	the		dispatch()		function:

dispatch(addTodo(text))

dispatch(completeTodo(index))

Alternatively,	you	can	create	a	bound	action	creator	that	automatically	dispatches:

const	boundAddTodo	=	text	=>	dispatch(addTodo(text))

const	boundCompleteTodo	=	index	=>	dispatch(completeTodo(index))

Now	you'll	be	able	to	call	them	directly:

boundAddTodo(text)

boundCompleteTodo(index)

The		dispatch()		function	can	be	accessed	directly	from	the	store	as		store.dispatch()	,	but	more	likely	you'll	access	it
using	a	helper	like	react-redux's		connect()	.	You	can	use		bindActionCreators()		to	automatically	bind	many	action
creators	to	a		dispatch()		function.

Action	creators	can	also	be	asynchronous	and	have	side-effects.	You	can	read	about	async	actions	in	the	advanced
tutorial	to	learn	how	to	handle	AJAX	responses	and	compose	action	creators	into	async	control	flow.	Don't	skip	ahead
to	async	actions	until	you've	completed	the	basics	tutorial,	as	it	covers	other	important	concepts	that	are	prerequisite
for	the	advanced	tutorial	and	async	actions.

Source	Code

	actions.js	

/*

	*	action	types

	*/

Actions

54

http://facebook.github.io/flux
http://github.com/gaearon/react-redux

export	const	ADD_TODO	=	'ADD_TODO'

export	const	TOGGLE_TODO	=	'TOGGLE_TODO'

export	const	SET_VISIBILITY_FILTER	=	'SET_VISIBILITY_FILTER'

/*

	*	other	constants

	*/

export	const	VisibilityFilters	=	{

		SHOW_ALL:	'SHOW_ALL',

		SHOW_COMPLETED:	'SHOW_COMPLETED',

		SHOW_ACTIVE:	'SHOW_ACTIVE'

}

/*

	*	action	creators

	*/

export	function	addTodo(text)	{

		return	{	type:	ADD_TODO,	text	}

}

export	function	toggleTodo(index)	{

		return	{	type:	TOGGLE_TODO,	index	}

}

export	function	setVisibilityFilter(filter)	{

		return	{	type:	SET_VISIBILITY_FILTER,	filter	}

}

Next	Steps
Now	let's	define	some	reducers	to	specify	how	the	state	updates	when	you	dispatch	these	actions!

Actions

55

Reducers
Reducers	specify	how	the	application's	state	changes	in	response	to	actions	sent	to	the	store.	Remember	that
actions	only	describe	what	happened,	but	don't	describe	how	the	application's	state	changes.

Designing	the	State	Shape
In	Redux,	all	the	application	state	is	stored	as	a	single	object.	It's	a	good	idea	to	think	of	its	shape	before	writing	any
code.	What's	the	minimal	representation	of	your	app's	state	as	an	object?

For	our	todo	app,	we	want	to	store	two	different	things:

The	currently	selected	visibility	filter.
The	actual	list	of	todos.

You'll	often	find	that	you	need	to	store	some	data,	as	well	as	some	UI	state,	in	the	state	tree.	This	is	fine,	but	try	to
keep	the	data	separate	from	the	UI	state.

{

		visibilityFilter:	'SHOW_ALL',

		todos:	[

				{

						text:	'Consider	using	Redux',

						completed:	true

				},

				{

						text:	'Keep	all	state	in	a	single	tree',

						completed:	false

				}

]

}

Note	on	Relationships

In	a	more	complex	app,	you're	going	to	want	different	entities	to	reference	each	other.	We	suggest	that	you
keep	your	state	as	normalized	as	possible,	without	any	nesting.	Keep	every	entity	in	an	object	stored	with	an	ID
as	a	key,	and	use	IDs	to	reference	it	from	other	entities,	or	lists.	Think	of	the	app's	state	as	a	database.	This
approach	is	described	in	normalizr's	documentation	in	detail.	For	example,	keeping		todosById:	{	id	->	todo	}	
and		todos:	array<id>		inside	the	state	would	be	a	better	idea	in	a	real	app,	but	we're	keeping	the	example
simple.

Handling	Actions
Now	that	we've	decided	what	our	state	object	looks	like,	we're	ready	to	write	a	reducer	for	it.	The	reducer	is	a	pure
function	that	takes	the	previous	state	and	an	action,	and	returns	the	next	state.

(previousState,	action)	=>	newState

It's	called	a	reducer	because	it's	the	type	of	function	you	would	pass	to		Array.prototype.reduce(reducer,	?
initialValue)	.	It's	very	important	that	the	reducer	stays	pure.	Things	you	should	never	do	inside	a	reducer:

Mutate	its	arguments;
Perform	side	effects	like	API	calls	and	routing	transitions;

Reducers

56

https://github.com/paularmstrong/normalizr
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

Call	non-pure	functions,	e.g.		Date.now()		or		Math.random()	.

We'll	explore	how	to	perform	side	effects	in	the	advanced	walkthrough.	For	now,	just	remember	that	the	reducer	must
be	pure.	Given	the	same	arguments,	it	should	calculate	the	next	state	and	return	it.	No	surprises.	No	side
effects.	No	API	calls.	No	mutations.	Just	a	calculation.

With	this	out	of	the	way,	let's	start	writing	our	reducer	by	gradually	teaching	it	to	understand	the	actions	we	defined
earlier.

We'll	start	by	specifying	the	initial	state.	Redux	will	call	our	reducer	with	an		undefined		state	for	the	first	time.	This	is
our	chance	to	return	the	initial	state	of	our	app:

import	{	VisibilityFilters	}	from	'./actions'

const	initialState	=	{

		visibilityFilter:	VisibilityFilters.SHOW_ALL,

		todos:	[]

}

function	todoApp(state,	action)	{

		if	(typeof	state	===	'undefined')	{

				return	initialState

		}

		//	For	now,	don't	handle	any	actions

		//	and	just	return	the	state	given	to	us.

		return	state

}

One	neat	trick	is	to	use	the	ES6	default	arguments	syntax	to	write	this	in	a	more	compact	way:

function	todoApp(state	=	initialState,	action)	{

		//	For	now,	don't	handle	any	actions

		//	and	just	return	the	state	given	to	us.

		return	state

}

Now	let's	handle		SET_VISIBILITY_FILTER	.	All	it	needs	to	do	is	to	change		visibilityFilter		on	the	state.	Easy:

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				default:

						return	state

		}

}

Note	that:

1.	We	don't	mutate	the		state	.	We	create	a	copy	with		Object.assign()	.		Object.assign(state,	{	visibilityFilter:
action.filter	})		is	also	wrong:	it	will	mutate	the	first	argument.	You	must	supply	an	empty	object	as	the	first
parameter.	You	can	also	enable	the	object	spread	operator	proposal	to	write		{	...state,	...newState	}		instead.

2.	We	return	the	previous		state		in	the		default		case.	It's	important	to	return	the	previous		state		for	any
unknown	action.

Note	on		Object.assign	

	Object.assign()		is	a	part	of	ES6,	and	is	not	supported	by	older	browsers.	To	support	them,	you	will	need	to
either	use	a	polyfill,	a	Babel	plugin,	or	a	helper	from	another	library	like		_.assign()	.

Reducers

57

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://www.npmjs.com/package/babel-plugin-transform-object-assign
https://lodash.com/docs#assign

Note	on		switch		and	Boilerplate

The		switch		statement	is	not	the	real	boilerplate.	The	real	boilerplate	of	Flux	is	conceptual:	the	need	to	emit	an
update,	the	need	to	register	the	Store	with	a	Dispatcher,	the	need	for	the	Store	to	be	an	object	(and	the
complications	that	arise	when	you	want	a	universal	app).	Redux	solves	these	problems	by	using	pure	reducers
instead	of	event	emitters.

It's	unfortunate	that	many	still	choose	a	framework	based	on	whether	it	uses		switch		statements	in	the
documentation.	If	you	don't	like		switch	,	you	can	use	a	custom		createReducer		function	that	accepts	a	handler
map,	as	shown	in	“reducing	boilerplate”.

Handling	More	Actions
We	have	two	more	actions	to	handle!	Just	like	we	did	with		SET_VISIBILITY_FILTER	,	we'll	import	the		ADD_TODO		and
	TOGGLE_TODO		actions	and	then	extend	our	reducer	to	handle		ADD_TODO	.

import	{

		ADD_TODO,

		TOGGLE_TODO,

		SET_VISIBILITY_FILTER,

		VisibilityFilters

}	from	'./actions'

...

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				case	ADD_TODO:

						return	Object.assign({},	state,	{

								todos:	[

										...state.todos,

										{

												text:	action.text,

												completed:	false

										}

]

						})

				default:

						return	state

		}

}

Just	like	before,	we	never	write	directly	to		state		or	its	fields,	and	instead	we	return	new	objects.	The	new		todos		is
equal	to	the	old		todos		concatenated	with	a	single	new	item	at	the	end.	The	fresh	todo	was	constructed	using	the
data	from	the	action.

Finally,	the	implementation	of	the		TOGGLE_TODO		handler	shouldn't	come	as	a	complete	surprise:

case	TOGGLE_TODO:

		return	Object.assign({},	state,	{

				todos:	state.todos.map((todo,	index)	=>	{

						if	(index	===	action.index)	{

								return	Object.assign({},	todo,	{

										completed:	!todo.completed

								})

						}

						return	todo

				})

		})

Reducers

58

Because	we	want	to	update	a	specific	item	in	the	array	without	resorting	to	mutations,	we	have	to	create	a	new	array
with	the	same	items	except	the	item	at	the	index.	If	you	find	yourself	often	writing	such	operations,	it's	a	good	idea	to
use	a	helper	like	immutability-helper,	updeep,	or	even	a	library	like	Immutable	that	has	native	support	for	deep
updates.	Just	remember	to	never	assign	to	anything	inside	the		state		unless	you	clone	it	first.

Splitting	Reducers
Here	is	our	code	so	far.	It	is	rather	verbose:

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				case	ADD_TODO:

						return	Object.assign({},	state,	{

								todos:	[

										...state.todos,

										{

												text:	action.text,

												completed:	false

										}

]

						})

				case	TOGGLE_TODO:

						return	Object.assign({},	state,	{

								todos:	state.todos.map((todo,	index)	=>	{

										if	(index	===	action.index)	{

												return	Object.assign({},	todo,	{

														completed:	!todo.completed

												})

										}

										return	todo

								})

						})

				default:

						return	state

		}

}

Is	there	a	way	to	make	it	easier	to	comprehend?	It	seems	like		todos		and		visibilityFilter		are	updated	completely
independently.	Sometimes	state	fields	depend	on	one	another	and	more	consideration	is	required,	but	in	our	case	we
can	easily	split	updating		todos		into	a	separate	function:

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	ADD_TODO:

						return	[

								...state,

								{

										text:	action.text,

										completed:	false

								}

]

				case	TOGGLE_TODO:

						return	state.map((todo,	index)	=>	{

								if	(index	===	action.index)	{

										return	Object.assign({},	todo,	{

												completed:	!todo.completed

										})

								}

								return	todo

						})

				default:

						return	state

Reducers

59

https://github.com/kolodny/immutability-helper
https://github.com/substantial/updeep
http://facebook.github.io/immutable-js/

		}

}

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				case	ADD_TODO:

						return	Object.assign({},	state,	{

								todos:	todos(state.todos,	action)

						})

				case	TOGGLE_TODO:

						return	Object.assign({},	state,	{

								todos:	todos(state.todos,	action)

						})

				default:

						return	state

		}

}

Note	that		todos		also	accepts		state	—but		state		is	an	array!	Now		todoApp		gives		todos		just	a	slice	of	the	state	to
manage,	and		todos		knows	how	to	update	just	that	slice.	This	is	called	reducer	composition,	and	it's	the
fundamental	pattern	of	building	Redux	apps.

Let's	explore	reducer	composition	more.	Can	we	also	extract	a	reducer	managing	just		visibilityFilter	?	We	can.

Below	our	imports,	let's	use	ES6	Object	Destructuring	to	declare		SHOW_ALL	:

const	{	SHOW_ALL	}	=	VisibilityFilters

Then:

function	visibilityFilter(state	=	SHOW_ALL,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	action.filter

				default:

						return	state

		}

}

Now	we	can	rewrite	the	main	reducer	as	a	function	that	calls	the	reducers	managing	parts	of	the	state,	and	combines
them	into	a	single	object.	It	also	doesn't	need	to	know	the	complete	initial	state	anymore.	It's	enough	that	the	child
reducers	return	their	initial	state	when	given		undefined		at	first.

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	ADD_TODO:

						return	[

								...state,

								{

										text:	action.text,

										completed:	false

								}

]

				case	TOGGLE_TODO:

						return	state.map((todo,	index)	=>	{

								if	(index	===	action.index)	{

										return	Object.assign({},	todo,	{

												completed:	!todo.completed

										})

								}

								return	todo

						})

Reducers

60

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

				default:

						return	state

		}

}

function	visibilityFilter(state	=	SHOW_ALL,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	action.filter

				default:

						return	state

		}

}

function	todoApp(state	=	{},	action)	{

		return	{

				visibilityFilter:	visibilityFilter(state.visibilityFilter,	action),

				todos:	todos(state.todos,	action)

		}

}

Note	that	each	of	these	reducers	is	managing	its	own	part	of	the	global	state.	The		state		parameter	is
different	for	every	reducer,	and	corresponds	to	the	part	of	the	state	it	manages.

This	is	already	looking	good!	When	the	app	is	larger,	we	can	split	the	reducers	into	separate	files	and	keep	them
completely	independent	and	managing	different	data	domains.

Finally,	Redux	provides	a	utility	called		combineReducers()		that	does	the	same	boilerplate	logic	that	the		todoApp	
above	currently	does.	With	its	help,	we	can	rewrite		todoApp		like	this:

import	{	combineReducers	}	from	'redux'

const	todoApp	=	combineReducers({

		visibilityFilter,

		todos

})

export	default	todoApp

Note	that	this	is	equivalent	to:

export	default	function	todoApp(state	=	{},	action)	{

		return	{

				visibilityFilter:	visibilityFilter(state.visibilityFilter,	action),

				todos:	todos(state.todos,	action)

		}

}

You	could	also	give	them	different	keys,	or	call	functions	differently.	These	two	ways	to	write	a	combined	reducer	are
equivalent:

const	reducer	=	combineReducers({

		a:	doSomethingWithA,

		b:	processB,

		c:	c

})

function	reducer(state	=	{},	action)	{

		return	{

				a:	doSomethingWithA(state.a,	action),

				b:	processB(state.b,	action),

				c:	c(state.c,	action)

		}

}

Reducers

61

All		combineReducers()		does	is	generate	a	function	that	calls	your	reducers	with	the	slices	of	state	selected
according	to	their	keys,	and	combines	their	results	into	a	single	object	again.	It's	not	magic.	And	like	other	reducers,
	combineReducers()		does	not	create	a	new	object	if	all	of	the	reducers	provided	to	it	do	not	change	state.

Note	for	ES6	Savvy	Users

Because		combineReducers		expects	an	object,	we	can	put	all	top-level	reducers	into	a	separate	file,		export	
each	reducer	function,	and	use		import	*	as	reducers		to	get	them	as	an	object	with	their	names	as	the	keys:

import	{	combineReducers	}	from	'redux'

import	*	as	reducers	from	'./reducers'

const	todoApp	=	combineReducers(reducers)

Because		import	*		is	still	new	syntax,	we	don't	use	it	anymore	in	the	documentation	to	avoid	confusion,	but
you	may	encounter	it	in	some	community	examples.

Source	Code
	reducers.js	

import	{	combineReducers	}	from	'redux'

import	{

		ADD_TODO,

		TOGGLE_TODO,

		SET_VISIBILITY_FILTER,

		VisibilityFilters

}	from	'./actions'

const	{	SHOW_ALL	}	=	VisibilityFilters

function	visibilityFilter(state	=	SHOW_ALL,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	action.filter

				default:

						return	state

		}

}

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	ADD_TODO:

						return	[

								...state,

								{

										text:	action.text,

										completed:	false

								}

]

				case	TOGGLE_TODO:

						return	state.map((todo,	index)	=>	{

								if	(index	===	action.index)	{

										return	Object.assign({},	todo,	{

												completed:	!todo.completed

										})

								}

								return	todo

						})

				default:

						return	state

		}

}

const	todoApp	=	combineReducers({

		visibilityFilter,

		todos

Reducers

62

https://github.com/reduxjs/redux/issues/428#issuecomment-129223274
https://github.com/reduxjs/redux/issues/428#issuecomment-129223274

})

export	default	todoApp

Next	Steps
Next,	we'll	explore	how	to	create	a	Redux	store	that	holds	the	state	and	takes	care	of	calling	your	reducer	when	you
dispatch	an	action.

Reducers

63

Store
In	the	previous	sections,	we	defined	the	actions	that	represent	the	facts	about	“what	happened”	and	the	reducers	that
update	the	state	according	to	those	actions.

The	Store	is	the	object	that	brings	them	together.	The	store	has	the	following	responsibilities:

Holds	application	state;
Allows	access	to	state	via		getState()	;
Allows	state	to	be	updated	via		dispatch(action)	;
Registers	listeners	via		subscribe(listener)	;
Handles	unregistering	of	listeners	via	the	function	returned	by		subscribe(listener)	.

It's	important	to	note	that	you'll	only	have	a	single	store	in	a	Redux	application.	When	you	want	to	split	your	data
handling	logic,	you'll	use	reducer	composition	instead	of	many	stores.

It's	easy	to	create	a	store	if	you	have	a	reducer.	In	the	previous	section,	we	used		combineReducers()		to	combine
several	reducers	into	one.	We	will	now	import	it,	and	pass	it	to		createStore()	.

import	{	createStore	}	from	'redux'

import	todoApp	from	'./reducers'

const	store	=	createStore(todoApp)

You	may	optionally	specify	the	initial	state	as	the	second	argument	to		createStore()	.	This	is	useful	for	hydrating	the
state	of	the	client	to	match	the	state	of	a	Redux	application	running	on	the	server.

const	store	=	createStore(todoApp,	window.STATE_FROM_SERVER)

Dispatching	Actions
Now	that	we	have	created	a	store,	let's	verify	our	program	works!	Even	without	any	UI,	we	can	already	test	the	update
logic.

import	{

		addTodo,

		toggleTodo,

		setVisibilityFilter,

		VisibilityFilters

}	from	'./actions'

//	Log	the	initial	state

console.log(store.getState())

//	Every	time	the	state	changes,	log	it

//	Note	that	subscribe()	returns	a	function	for	unregistering	the	listener

const	unsubscribe	=	store.subscribe(()	=>	console.log(store.getState()))

//	Dispatch	some	actions

store.dispatch(addTodo('Learn	about	actions'))

store.dispatch(addTodo('Learn	about	reducers'))

store.dispatch(addTodo('Learn	about	store'))

store.dispatch(toggleTodo(0))

store.dispatch(toggleTodo(1))

store.dispatch(setVisibilityFilter(VisibilityFilters.SHOW_COMPLETED))

//	Stop	listening	to	state	updates

unsubscribe()

Store

64

You	can	see	how	this	causes	the	state	held	by	the	store	to	change:

We	specified	the	behavior	of	our	app	before	we	even	started	writing	the	UI.	We	won't	do	this	in	this	tutorial,	but	at	this
point	you	can	write	tests	for	your	reducers	and	action	creators.	You	won't	need	to	mock	anything	because	they	are
just	pure	functions.	Call	them,	and	make	assertions	on	what	they	return.

Source	Code
	index.js	

import	{	createStore	}	from	'redux'

import	todoApp	from	'./reducers'

const	store	=	createStore(todoApp)

Next	Steps
Before	creating	a	UI	for	our	todo	app,	we	will	take	a	detour	to	see	how	the	data	flows	in	a	Redux	application.

Store

65

Store

66

Data	Flow
Redux	architecture	revolves	around	a	strict	unidirectional	data	flow.

This	means	that	all	data	in	an	application	follows	the	same	lifecycle	pattern,	making	the	logic	of	your	app	more
predictable	and	easier	to	understand.	It	also	encourages	data	normalization,	so	that	you	don't	end	up	with	multiple,
independent	copies	of	the	same	data	that	are	unaware	of	one	another.

If	you're	still	not	convinced,	read	Motivation	and	The	Case	for	Flux	for	a	compelling	argument	in	favor	of	unidirectional
data	flow.	Although	Redux	is	not	exactly	Flux,	it	shares	the	same	key	benefits.

The	data	lifecycle	in	any	Redux	app	follows	these	4	steps:

1.	 You	call		store.dispatch(action)	.

An	action	is	a	plain	object	describing	what	happened.	For	example:

	{	type:	'LIKE_ARTICLE',	articleId:	42	}

	{	type:	'FETCH_USER_SUCCESS',	response:	{	id:	3,	name:	'Mary'	}	}

	{	type:	'ADD_TODO',	text:	'Read	the	Redux	docs.'	}

Think	of	an	action	as	a	very	brief	snippet	of	news.	“Mary	liked	article	42.”	or	“'Read	the	Redux	docs.'	was	added	to	the
list	of	todos.”

You	can	call		store.dispatch(action)		from	anywhere	in	your	app,	including	components	and	XHR	callbacks,	or	even
at	scheduled	intervals.

1.	 The	Redux	store	calls	the	reducer	function	you	gave	it.

The	store	will	pass	two	arguments	to	the	reducer:	the	current	state	tree	and	the	action.	For	example,	in	the	todo	app,
the	root	reducer	might	receive	something	like	this:

//	The	current	application	state	(list	of	todos	and	chosen	filter)

let	previousState	=	{

		visibleTodoFilter:	'SHOW_ALL',

		todos:	[

				{

						text:	'Read	the	docs.',

						complete:	false

				}

]

}

//	The	action	being	performed	(adding	a	todo)

let	action	=	{

		type:	'ADD_TODO',

		text:	'Understand	the	flow.'

}

//	Your	reducer	returns	the	next	application	state

let	nextState	=	todoApp(previousState,	action)

Note	that	a	reducer	is	a	pure	function.	It	only	computes	the	next	state.	It	should	be	completely	predictable:	calling	it
with	the	same	inputs	many	times	should	produce	the	same	outputs.	It	shouldn't	perform	any	side	effects	like	API	calls
or	router	transitions.	These	should	happen	before	an	action	is	dispatched.

1.	 The	root	reducer	may	combine	the	output	of	multiple	reducers	into	a	single	state	tree.

How	you	structure	the	root	reducer	is	completely	up	to	you.	Redux	ships	with	a		combineReducers()		helper	function,
useful	for	“splitting”	the	root	reducer	into	separate	functions	that	each	manage	one	branch	of	the	state	tree.

Data	Flow

67

https://medium.com/@dan_abramov/the-case-for-flux-379b7d1982c6

Here's	how		combineReducers()		works.	Let's	say	you	have	two	reducers,	one	for	a	list	of	todos,	and	another	for	the
currently	selected	filter	setting:

function	todos(state	=	[],	action)	{

		//	Somehow	calculate	it...

		return	nextState

}

function	visibleTodoFilter(state	=	'SHOW_ALL',	action)	{

		//	Somehow	calculate	it...

		return	nextState

}

let	todoApp	=	combineReducers({

		todos,

		visibleTodoFilter

})

When	you	emit	an	action,		todoApp		returned	by		combineReducers		will	call	both	reducers:

let	nextTodos	=	todos(state.todos,	action)

let	nextVisibleTodoFilter	=	visibleTodoFilter(state.visibleTodoFilter,	action)

It	will	then	combine	both	sets	of	results	into	a	single	state	tree:

return	{

		todos:	nextTodos,

		visibleTodoFilter:	nextVisibleTodoFilter

}

While		combineReducers()		is	a	handy	helper	utility,	you	don't	have	to	use	it;	feel	free	to	write	your	own	root	reducer!

1.	 The	Redux	store	saves	the	complete	state	tree	returned	by	the	root	reducer.

This	new	tree	is	now	the	next	state	of	your	app!	Every	listener	registered	with		store.subscribe(listener)		will	now	be
invoked;	listeners	may	call		store.getState()		to	get	the	current	state.

Now,	the	UI	can	be	updated	to	reflect	the	new	state.	If	you	use	bindings	like	React	Redux,	this	is	the	point	at	which
	component.setState(newState)		is	called.

Next	Steps
Now	that	you	know	how	Redux	works,	let's	connect	it	to	a	React	app.

Note	for	Advanced	Users

If	you're	already	familiar	with	the	basic	concepts	and	have	previously	completed	this	tutorial,	don't	forget	to
check	out	async	flow	in	the	advanced	tutorial	to	learn	how	middleware	transforms	async	actions	before	they
reach	the	reducer.

Data	Flow

68

https://github.com/gaearon/react-redux

Usage	with	React
From	the	very	beginning,	we	need	to	stress	that	Redux	has	no	relation	to	React.	You	can	write	Redux	apps	with
React,	Angular,	Ember,	jQuery,	or	vanilla	JavaScript.

That	said,	Redux	works	especially	well	with	libraries	like	React	and	Deku	because	they	let	you	describe	UI	as	a
function	of	state,	and	Redux	emits	state	updates	in	response	to	actions.

We	will	use	React	to	build	our	simple	todo	app,	and	cover	the	basics	of	how	to	use	React	with	Redux.

Note:	see	the	official	React-Redux	docs	at	https://react-redux.js.org	for	a	complete	guide	on	how	to	use
Redux	and	React	together.

Installing	React	Redux
React	bindings	are	not	included	in	Redux	by	default.	You	need	to	install	them	explicitly:

npm	install	--save	react-redux

If	you	don't	use	npm,	you	may	grab	the	latest	UMD	build	from	unpkg	(either	a	development	or	a	production	build).	The
UMD	build	exports	a	global	called		window.ReactRedux		if	you	add	it	to	your	page	via	a		<script>		tag.

Presentational	and	Container	Components
React	bindings	for	Redux	separate	presentational	components	from	container	components.	This	approach	can	make
your	app	easier	to	understand	and	allow	you	to	more	easily	reuse	components.	Here's	a	summary	of	the	differences
between	presentational	and	container	components	(but	if	you're	unfamiliar,	we	recommend	that	you	also	read	Dan
Abramov's	original	article	describing	the	concept	of	presentational	and	container	components):

Presentational	Components Container	Components

Purpose How	things	look	(markup,	styles) How	things	work	(data	fetching,	state	updates)

Aware	of	Redux No Yes

To	read	data Read	data	from	props Subscribe	to	Redux	state

To	change	data Invoke	callbacks	from	props Dispatch	Redux	actions

Are	written By	hand Usually	generated	by	React	Redux

Most	of	the	components	we'll	write	will	be	presentational,	but	we'll	need	to	generate	a	few	container	components	to
connect	them	to	the	Redux	store.	This	and	the	design	brief	below	do	not	imply	container	components	must	be	near
the	top	of	the	component	tree.	If	a	container	component	becomes	too	complex	(i.e.	it	has	heavily	nested
presentational	components	with	countless	callbacks	being	passed	down),	introduce	another	container	within	the
component	tree	as	noted	in	the	FAQ.

Technically	you	could	write	the	container	components	by	hand	using		store.subscribe()	.	We	don't	advise	you	to	do
this	because	React	Redux	makes	many	performance	optimizations	that	are	hard	to	do	by	hand.	For	this	reason,
rather	than	write	container	components,	we	will	generate	them	using	the		connect()		function	provided	by	React
Redux,	as	you	will	see	below.

Usage	with	React

69

http://facebook.github.io/react/
https://github.com/dekujs/deku
https://react-redux.js.org
https://github.com/reduxjs/react-redux
https://unpkg.com/react-redux@latest/dist/react-redux.js
https://unpkg.com/react-redux@latest/dist/react-redux.min.js
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://react-redux.js.org/api#connect

Designing	Component	Hierarchy
Remember	how	we	designed	the	shape	of	the	root	state	object?	It's	time	we	design	the	UI	hierarchy	to	match	it.	This
is	not	a	Redux-specific	task.	Thinking	in	React	is	a	great	tutorial	that	explains	the	process.

Our	design	brief	is	simple.	We	want	to	show	a	list	of	todo	items.	On	click,	a	todo	item	is	crossed	out	as	completed.	We
want	to	show	a	field	where	the	user	may	add	a	new	todo.	In	the	footer,	we	want	to	show	a	toggle	to	show	all,	only
completed,	or	only	active	todos.

Designing	Presentational	Components

I	see	the	following	presentational	components	and	their	props	emerge	from	this	brief:

	TodoList		is	a	list	showing	visible	todos.
	todos:	Array		is	an	array	of	todo	items	with		{	id,	text,	completed	}		shape.
	onTodoClick(id:	number)		is	a	callback	to	invoke	when	a	todo	is	clicked.

	Todo		is	a	single	todo	item.
	text:	string		is	the	text	to	show.
	completed:	boolean		is	whether	the	todo	should	appear	crossed	out.
	onClick()		is	a	callback	to	invoke	when	the	todo	is	clicked.

	Link		is	a	link	with	a	callback.
	onClick()		is	a	callback	to	invoke	when	the	link	is	clicked.

	Footer		is	where	we	let	the	user	change	currently	visible	todos.
	App		is	the	root	component	that	renders	everything	else.

They	describe	the	look	but	don't	know	where	the	data	comes	from,	or	how	to	change	it.	They	only	render	what's	given
to	them.	If	you	migrate	from	Redux	to	something	else,	you'll	be	able	to	keep	all	these	components	exactly	the	same.
They	have	no	dependency	on	Redux.

Designing	Container	Components

We	will	also	need	some	container	components	to	connect	the	presentational	components	to	Redux.	For	example,	the
presentational		TodoList		component	needs	a	container	like		VisibleTodoList		that	subscribes	to	the	Redux	store	and
knows	how	to	apply	the	current	visibility	filter.	To	change	the	visibility	filter,	we	will	provide	a		FilterLink		container
component	that	renders	a		Link		that	dispatches	an	appropriate	action	on	click:

	VisibleTodoList		filters	the	todos	according	to	the	current	visibility	filter	and	renders	a		TodoList	.
	FilterLink		gets	the	current	visibility	filter	and	renders	a		Link	.

	filter:	string		is	the	visibility	filter	it	represents.

Designing	Other	Components

Sometimes	it's	hard	to	tell	if	some	component	should	be	a	presentational	component	or	a	container.	For	example,
sometimes	form	and	function	are	really	coupled	together,	such	as	in	the	case	of	this	tiny	component:

	AddTodo		is	an	input	field	with	an	“Add”	button

Technically	we	could	split	it	into	two	components	but	it	might	be	too	early	at	this	stage.	It's	fine	to	mix	presentation	and
logic	in	a	component	that	is	very	small.	As	it	grows,	it	will	be	more	obvious	how	to	split	it,	so	we'll	leave	it	mixed.

Implementing	Components

Usage	with	React

70

https://facebook.github.io/react/docs/thinking-in-react.html

Let's	write	the	components!	We	begin	with	the	presentational	components	so	we	don't	need	to	think	about	binding	to
Redux	yet.

Implementing	Presentational	Components

These	are	all	normal	React	components,	so	we	won't	examine	them	in	detail.	We	write	functional	stateless
components	unless	we	need	to	use	local	state	or	the	lifecycle	methods.	This	doesn't	mean	that	presentational
components	have	to	be	functions—it's	just	easier	to	define	them	this	way.	If	and	when	you	need	to	add	local	state,
lifecycle	methods,	or	performance	optimizations,	you	can	convert	them	to	classes.

	components/Todo.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

const	Todo	=	({	onClick,	completed,	text	})	=>	(

		<li

				onClick={onClick}

				style={{

						textDecoration:	completed	?	'line-through'	:	'none'

				}}

		>

				{text}

		

)

Todo.propTypes	=	{

		onClick:	PropTypes.func.isRequired,

		completed:	PropTypes.bool.isRequired,

		text:	PropTypes.string.isRequired

}

export	default	Todo

	components/TodoList.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	Todo	from	'./Todo'

const	TodoList	=	({	todos,	onTodoClick	})	=>	(

		

				{todos.map((todo,	index)	=>	(

						<Todo	key={index}	{...todo}	onClick={()	=>	onTodoClick(index)}	/>

))}

		

)

TodoList.propTypes	=	{

		todos:	PropTypes.arrayOf(

				PropTypes.shape({

						id:	PropTypes.number.isRequired,

						completed:	PropTypes.bool.isRequired,

						text:	PropTypes.string.isRequired

				}).isRequired

).isRequired,

		onTodoClick:	PropTypes.func.isRequired

}

export	default	TodoList

	components/Link.js	

import	React	from	'react'

Usage	with	React

71

import	PropTypes	from	'prop-types'

const	Link	=	({	active,	children,	onClick	})	=>	{

		if	(active)	{

				return	{children}

		}

		return	(

				<a

						href=""

						onClick={e	=>	{

								e.preventDefault()

								onClick()

						}}

				>

						{children}

				

)

}

Link.propTypes	=	{

		active:	PropTypes.bool.isRequired,

		children:	PropTypes.node.isRequired,

		onClick:	PropTypes.func.isRequired

}

export	default	Link

	components/Footer.js	

import	React	from	'react'

import	FilterLink	from	'../containers/FilterLink'

import	{	VisibilityFilters	}	from	'../actions'

const	Footer	=	()	=>	(

		<p>

				Show:	<FilterLink	filter={VisibilityFilters.SHOW_ALL}>All</FilterLink>

				{',	'}

				<FilterLink	filter={VisibilityFilters.SHOW_ACTIVE}>Active</FilterLink>

				{',	'}

				<FilterLink	filter={VisibilityFilters.SHOW_COMPLETED}>Completed</FilterLink>

		</p>

)

export	default	Footer

Implementing	Container	Components

Now	it's	time	to	hook	up	those	presentational	components	to	Redux	by	creating	some	containers.	Technically,	a
container	component	is	just	a	React	component	that	uses		store.subscribe()		to	read	a	part	of	the	Redux	state	tree
and	supply	props	to	a	presentational	component	it	renders.	You	could	write	a	container	component	by	hand,	but	we
suggest	instead	generating	container	components	with	the	React	Redux	library's		connect()		function,	which	provides
many	useful	optimizations	to	prevent	unnecessary	re-renders.	(One	result	of	this	is	that	you	shouldn't	have	to	worry
about	the	React	performance	suggestion	of	implementing		shouldComponentUpdate		yourself.)

To	use		connect()	,	you	need	to	define	a	special	function	called		mapStateToProps		that	describes	how	to	transform	the
current	Redux	store	state	into	the	props	you	want	to	pass	to	a	presentational	component	you	are	wrapping.	For
example,		VisibleTodoList		needs	to	calculate		todos		to	pass	to	the		TodoList	,	so	we	define	a	function	that	filters	the
	state.todos		according	to	the		state.visibilityFilter	,	and	use	it	in	its		mapStateToProps	:

const	getVisibleTodos	=	(todos,	filter)	=>	{

		switch	(filter)	{

				case	'SHOW_COMPLETED':

						return	todos.filter(t	=>	t.completed)

				case	'SHOW_ACTIVE':

Usage	with	React

72

https://react-redux.js.org/using-react-redux/connect-mapstate
https://facebook.github.io/react/docs/advanced-performance.html

						return	todos.filter(t	=>	!t.completed)

				case	'SHOW_ALL':

				default:

						return	todos

		}

}

const	mapStateToProps	=	state	=>	{

		return	{

				todos:	getVisibleTodos(state.todos,	state.visibilityFilter)

		}

}

In	addition	to	reading	the	state,	container	components	can	dispatch	actions.	In	a	similar	fashion,	you	can	define	a
function	called		mapDispatchToProps()		that	receives	the		dispatch()		method	and	returns	callback	props	that	you	want
to	inject	into	the	presentational	component.	For	example,	we	want	the		VisibleTodoList		to	inject	a	prop	called
	onTodoClick		into	the		TodoList		component,	and	we	want		onTodoClick		to	dispatch	a		TOGGLE_TODO		action:

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

Finally,	we	create	the		VisibleTodoList		by	calling		connect()		and	passing	these	two	functions:

import	{	connect	}	from	'react-redux'

const	VisibleTodoList	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

These	are	the	basics	of	the	React	Redux	API,	but	there	are	a	few	shortcuts	and	power	options	so	we	encourage	you
to	check	out	its	documentation	in	detail.	In	case	you	are	worried	about		mapStateToProps		creating	new	objects	too
often,	you	might	want	to	learn	about	computing	derived	data	with	reselect.

Find	the	rest	of	the	container	components	defined	below:

	containers/FilterLink.js	

import	{	connect	}	from	'react-redux'

import	{	setVisibilityFilter	}	from	'../actions'

import	Link	from	'../components/Link'

const	mapStateToProps	=	(state,	ownProps)	=>	{

		return	{

				active:	ownProps.filter	===	state.visibilityFilter

		}

}

const	mapDispatchToProps	=	(dispatch,	ownProps)	=>	{

		return	{

				onClick:	()	=>	{

						dispatch(setVisibilityFilter(ownProps.filter))

				}

		}

}

const	FilterLink	=	connect(

		mapStateToProps,

Usage	with	React

73

https://github.com/reduxjs/react-redux
https://github.com/reduxjs/reselect

		mapDispatchToProps

)(Link)

export	default	FilterLink

	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

const	getVisibleTodos	=	(todos,	filter)	=>	{

		switch	(filter)	{

				case	'SHOW_ALL':

						return	todos

				case	'SHOW_COMPLETED':

						return	todos.filter(t	=>	t.completed)

				case	'SHOW_ACTIVE':

						return	todos.filter(t	=>	!t.completed)

		}

}

const	mapStateToProps	=	state	=>	{

		return	{

				todos:	getVisibleTodos(state.todos,	state.visibilityFilter)

		}

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

const	VisibleTodoList	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

Implementing	Other	Components

	containers/AddTodo.js	

Recall	as	mentioned	previously,	both	the	presentation	and	logic	for	the		AddTodo		component	are	mixed	into	a	single
definition.

import	React	from	'react'

import	{	connect	}	from	'react-redux'

import	{	addTodo	}	from	'../actions'

let	AddTodo	=	({	dispatch	})	=>	{

		let	input

		return	(

				<div>

						<form

								onSubmit={e	=>	{

										e.preventDefault()

										if	(!input.value.trim())	{

												return

										}

										dispatch(addTodo(input.value))

										input.value	=	''

								}}

Usage	with	React

74

						>

								<input

										ref={node	=>	{

												input	=	node

										}}

								/>

								<button	type="submit">Add	Todo</button>

						</form>

				</div>

)

}

AddTodo	=	connect()(AddTodo)

export	default	AddTodo

If	you	are	unfamiliar	with	the		ref		attribute,	please	read	this	documentation	to	familiarize	yourself	with	the
recommended	use	of	this	attribute.

Tying	the	containers	together	within	a	component

	components/App.js	

import	React	from	'react'

import	Footer	from	'./Footer'

import	AddTodo	from	'../containers/AddTodo'

import	VisibleTodoList	from	'../containers/VisibleTodoList'

const	App	=	()	=>	(

		<div>

				<AddTodo	/>

				<VisibleTodoList	/>

				<Footer	/>

		</div>

)

export	default	App

Passing	the	Store
All	container	components	need	access	to	the	Redux	store	so	they	can	subscribe	to	it.	One	option	would	be	to	pass	it
as	a	prop	to	every	container	component.	However	it	gets	tedious,	as	you	have	to	wire		store		even	through
presentational	components	just	because	they	happen	to	render	a	container	deep	in	the	component	tree.

The	option	we	recommend	is	to	use	a	special	React	Redux	component	called		<Provider>		to	magically	make	the
store	available	to	all	container	components	in	the	application	without	passing	it	explicitly.	You	only	need	to	use	it	once
when	you	render	the	root	component:

	index.js	

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	{	createStore	}	from	'redux'

import	todoApp	from	'./reducers'

import	App	from	'./components/App'

const	store	=	createStore(todoApp)

render(

		<Provider	store={store}>

				<App	/>

		</Provider>,

Usage	with	React

75

https://facebook.github.io/react/docs/refs-and-the-dom.html
https://react-redux.js.org/api/provider
https://facebook.github.io/react/docs/context.html

		document.getElementById('root')

)

Next	Steps
Read	the	complete	source	code	for	this	tutorial	to	better	internalize	the	knowledge	you	have	gained.	Then,	head
straight	to	the	advanced	tutorial	to	learn	how	to	handle	network	requests	and	routing!

You	should	also	take	some	time	to	read	through	the	React-Redux	docs	to	get	a	better	understanding	of	how	to	use
React	and	Redux	together.

Usage	with	React

76

https://react-redux.js.org

Example:	Todo	List
This	is	the	complete	source	code	of	the	tiny	todo	app	we	built	during	the	basics	tutorial.	This	code	is	also	in	our
repository	of	examples	and	can	be	run	in	your	browser	via	CodeSandbox.

Entry	Point

	index.js	

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	{	createStore	}	from	'redux'

import	rootReducer	from	'./reducers'

import	App	from	'./components/App'

const	store	=	createStore(rootReducer)

render(

		<Provider	store={store}>

				<App	/>

		</Provider>,

		document.getElementById('root')

)

Action	Creators

	actions/index.js	

let	nextTodoId	=	0

export	const	addTodo	=	text	=>	({

		type:	'ADD_TODO',

		id:	nextTodoId++,

		text

})

export	const	setVisibilityFilter	=	filter	=>	({

		type:	'SET_VISIBILITY_FILTER',

		filter

})

export	const	toggleTodo	=	id	=>	({

		type:	'TOGGLE_TODO',

		id

})

export	const	VisibilityFilters	=	{

		SHOW_ALL:	'SHOW_ALL',

		SHOW_COMPLETED:	'SHOW_COMPLETED',

		SHOW_ACTIVE:	'SHOW_ACTIVE'

}

Reducers
	reducers/todos.js	

const	todos	=	(state	=	[],	action)	=>	{

Example:	Todo	List

77

https://github.com/reduxjs/redux/tree/master/examples/todos/src
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos

		switch	(action.type)	{

				case	'ADD_TODO':

						return	[

								...state,

								{

										id:	action.id,

										text:	action.text,

										completed:	false

								}

]

				case	'TOGGLE_TODO':

						return	state.map(

								todo	=>

										todo.id	===	action.id	?	{	...todo,	completed:	!todo.completed	}	:	todo

)

				default:

						return	state

		}

}

export	default	todos

	reducers/visibilityFilter.js	

import	{	VisibilityFilters	}	from	'../actions'

const	visibilityFilter	=	(state	=	VisibilityFilters.SHOW_ALL,	action)	=>	{

		switch	(action.type)	{

				case	'SET_VISIBILITY_FILTER':

						return	action.filter

				default:

						return	state

		}

}

export	default	visibilityFilter

	reducers/index.js	

import	{	combineReducers	}	from	'redux'

import	todos	from	'./todos'

import	visibilityFilter	from	'./visibilityFilter'

export	default	combineReducers({

		todos,

		visibilityFilter

})

Presentational	Components

	components/Todo.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

const	Todo	=	({	onClick,	completed,	text	})	=>	(

		<li

				onClick={onClick}

				style={{

						textDecoration:	completed	?	'line-through'	:	'none'

				}}

		>

				{text}

		

)

Example:	Todo	List

78

Todo.propTypes	=	{

		onClick:	PropTypes.func.isRequired,

		completed:	PropTypes.bool.isRequired,

		text:	PropTypes.string.isRequired

}

export	default	Todo

	components/TodoList.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	Todo	from	'./Todo'

const	TodoList	=	({	todos,	toggleTodo	})	=>	(

		

				{todos.map(todo	=>	(

						<Todo	key={todo.id}	{...todo}	onClick={()	=>	toggleTodo(todo.id)}	/>

))}

		

)

TodoList.propTypes	=	{

		todos:	PropTypes.arrayOf(

				PropTypes.shape({

						id:	PropTypes.number.isRequired,

						completed:	PropTypes.bool.isRequired,

						text:	PropTypes.string.isRequired

				}).isRequired

).isRequired,

		toggleTodo:	PropTypes.func.isRequired

}

export	default	TodoList

	components/Link.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

const	Link	=	({	active,	children,	onClick	})	=>	(

		<button

				onClick={onClick}

				disabled={active}

				style={{

						marginLeft:	'4px'

				}}

		>

				{children}

		</button>

)

Link.propTypes	=	{

		active:	PropTypes.bool.isRequired,

		children:	PropTypes.node.isRequired,

		onClick:	PropTypes.func.isRequired

}

export	default	Link

	components/Footer.js	

import	React	from	'react'

import	FilterLink	from	'../containers/FilterLink'

import	{	VisibilityFilters	}	from	'../actions'

Example:	Todo	List

79

const	Footer	=	()	=>	(

		<div>

				Show:	

				<FilterLink	filter={VisibilityFilters.SHOW_ALL}>All</FilterLink>

				<FilterLink	filter={VisibilityFilters.SHOW_ACTIVE}>Active</FilterLink>

				<FilterLink	filter={VisibilityFilters.SHOW_COMPLETED}>Completed</FilterLink>

		</div>

)

export	default	Footer

	components/App.js	

import	React	from	'react'

import	Footer	from	'./Footer'

import	AddTodo	from	'../containers/AddTodo'

import	VisibleTodoList	from	'../containers/VisibleTodoList'

const	App	=	()	=>	(

		<div>

				<AddTodo	/>

				<VisibleTodoList	/>

				<Footer	/>

		</div>

)

export	default	App

Container	Components
	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

import	{	VisibilityFilters	}	from	'../actions'

const	getVisibleTodos	=	(todos,	filter)	=>	{

		switch	(filter)	{

				case	VisibilityFilters.SHOW_ALL:

						return	todos

				case	VisibilityFilters.SHOW_COMPLETED:

						return	todos.filter(t	=>	t.completed)

				case	VisibilityFilters.SHOW_ACTIVE:

						return	todos.filter(t	=>	!t.completed)

				default:

						throw	new	Error('Unknown	filter:	'	+	filter)

		}

}

const	mapStateToProps	=	state	=>	({

		todos:	getVisibleTodos(state.todos,	state.visibilityFilter)

})

const	mapDispatchToProps	=	dispatch	=>	({

		toggleTodo:	id	=>	dispatch(toggleTodo(id))

})

export	default	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

	containers/FilterLink.js	

Example:	Todo	List

80

import	{	connect	}	from	'react-redux'

import	{	setVisibilityFilter	}	from	'../actions'

import	Link	from	'../components/Link'

const	mapStateToProps	=	(state,	ownProps)	=>	({

		active:	ownProps.filter	===	state.visibilityFilter

})

const	mapDispatchToProps	=	(dispatch,	ownProps)	=>	({

		onClick:	()	=>	dispatch(setVisibilityFilter(ownProps.filter))

})

export	default	connect(

		mapStateToProps,

		mapDispatchToProps

)(Link)

Other	Components

	containers/AddTodo.js	

import	React	from	'react'

import	{	connect	}	from	'react-redux'

import	{	addTodo	}	from	'../actions'

const	AddTodo	=	({	dispatch	})	=>	{

		let	input

		return	(

				<div>

						<form

								onSubmit={e	=>	{

										e.preventDefault()

										if	(!input.value.trim())	{

												return

										}

										dispatch(addTodo(input.value))

										input.value	=	''

								}}

						>

								<input	ref={node	=>	(input	=	node)}	/>

								<button	type="submit">Add	Todo</button>

						</form>

				</div>

)

}

export	default	connect()(AddTodo)

Example:	Todo	List

81

Advanced
In	the	basics	walkthrough,	we	explored	how	to	structure	a	simple	Redux	application.	In	this	walkthrough,	we	will
explore	how	AJAX	and	routing	fit	into	the	picture.

Async	Actions
Async	Flow
Middleware
Usage	with	React	Router
Example:	Reddit	API
Next	Steps

Advanced

82

Async	Actions
In	the	basics	guide,	we	built	a	simple	todo	application.	It	was	fully	synchronous.	Every	time	an	action	was	dispatched,
the	state	was	updated	immediately.

In	this	guide,	we	will	build	a	different,	asynchronous	application.	It	will	use	the	Reddit	API	to	show	the	current
headlines	for	a	selected	subreddit.	How	does	asynchronicity	fit	into	Redux	flow?

Actions
When	you	call	an	asynchronous	API,	there	are	two	crucial	moments	in	time:	the	moment	you	start	the	call,	and	the
moment	when	you	receive	an	answer	(or	a	timeout).

Each	of	these	two	moments	usually	require	a	change	in	the	application	state;	to	do	that,	you	need	to	dispatch	normal
actions	that	will	be	processed	by	reducers	synchronously.	Usually,	for	any	API	request	you'll	want	to	dispatch	at	least
three	different	kinds	of	actions:

An	action	informing	the	reducers	that	the	request	began.

The	reducers	may	handle	this	action	by	toggling	an		isFetching		flag	in	the	state.	This	way	the	UI	knows	it's	time
to	show	a	spinner.

An	action	informing	the	reducers	that	the	request	finished	successfully.

The	reducers	may	handle	this	action	by	merging	the	new	data	into	the	state	they	manage	and	resetting
	isFetching	.	The	UI	would	hide	the	spinner,	and	display	the	fetched	data.

An	action	informing	the	reducers	that	the	request	failed.

The	reducers	may	handle	this	action	by	resetting		isFetching	.	Additionally,	some	reducers	may	want	to	store	the
error	message	so	the	UI	can	display	it.

You	may	use	a	dedicated		status		field	in	your	actions:

{	type:	'FETCH_POSTS'	}

{	type:	'FETCH_POSTS',	status:	'error',	error:	'Oops'	}

{	type:	'FETCH_POSTS',	status:	'success',	response:	{	...	}	}

Or	you	can	define	separate	types	for	them:

{	type:	'FETCH_POSTS_REQUEST'	}

{	type:	'FETCH_POSTS_FAILURE',	error:	'Oops'	}

{	type:	'FETCH_POSTS_SUCCESS',	response:	{	...	}	}

Choosing	whether	to	use	a	single	action	type	with	flags,	or	multiple	action	types,	is	up	to	you.	It's	a	convention	you
need	to	decide	with	your	team.	Multiple	types	leave	less	room	for	a	mistake,	but	this	is	not	an	issue	if	you	generate
action	creators	and	reducers	with	a	helper	library	like	redux-actions.

Whatever	convention	you	choose,	stick	with	it	throughout	the	application.
We'll	use	separate	types	in	this	tutorial.

Synchronous	Action	Creators

Async	Actions

83

https://redux-actions.js.org/

Let's	start	by	defining	the	several	synchronous	action	types	and	action	creators	we	need	in	our	example	app.	Here,
the	user	can	select	a	subreddit	to	display:

	actions.js		(Synchronous)

export	const	SELECT_SUBREDDIT	=	'SELECT_SUBREDDIT'

export	function	selectSubreddit(subreddit)	{

		return	{

				type:	SELECT_SUBREDDIT,

				subreddit

		}

}

They	can	also	press	a	“refresh”	button	to	update	it:

export	const	INVALIDATE_SUBREDDIT	=	'INVALIDATE_SUBREDDIT'

export	function	invalidateSubreddit(subreddit)	{

		return	{

				type:	INVALIDATE_SUBREDDIT,

				subreddit

		}

}

These	were	the	actions	governed	by	the	user	interaction.	We	will	also	have	another	kind	of	action,	governed	by	the
network	requests.	We	will	see	how	to	dispatch	them	later,	but	for	now,	we	just	want	to	define	them.

When	it's	time	to	fetch	the	posts	for	some	subreddit,	we	will	dispatch	a		REQUEST_POSTS		action:

export	const	REQUEST_POSTS	=	'REQUEST_POSTS'

function	requestPosts(subreddit)	{

		return	{

				type:	REQUEST_POSTS,

				subreddit

		}

}

It	is	important	for	it	to	be	separate	from		SELECT_SUBREDDIT		or		INVALIDATE_SUBREDDIT	.	While	they	may	occur	one	after
another,	as	the	app	grows	more	complex,	you	might	want	to	fetch	some	data	independently	of	the	user	action	(for
example,	to	prefetch	the	most	popular	subreddits,	or	to	refresh	stale	data	once	in	a	while).	You	may	also	want	to	fetch
in	response	to	a	route	change,	so	it's	not	wise	to	couple	fetching	to	some	particular	UI	event	early	on.

Finally,	when	the	network	request	comes	through,	we	will	dispatch		RECEIVE_POSTS	:

export	const	RECEIVE_POSTS	=	'RECEIVE_POSTS'

function	receivePosts(subreddit,	json)	{

		return	{

				type:	RECEIVE_POSTS,

				subreddit,

				posts:	json.data.children.map(child	=>	child.data),

				receivedAt:	Date.now()

		}

}

This	is	all	we	need	to	know	for	now.	The	particular	mechanism	to	dispatch	these	actions	together	with	network
requests	will	be	discussed	later.

Note	on	Error	Handling

Async	Actions

84

In	a	real	app,	you'd	also	want	to	dispatch	an	action	on	request	failure.	We	won't	implement	error	handling	in	this
tutorial,	but	the	real	world	example	shows	one	of	the	possible	approaches.

Designing	the	State	Shape
Just	like	in	the	basic	tutorial,	you'll	need	to	design	the	shape	of	your	application's	state	before	rushing	into	the
implementation.	With	asynchronous	code,	there	is	more	state	to	take	care	of,	so	we	need	to	think	it	through.

This	part	is	often	confusing	to	beginners,	because	it	is	not	immediately	clear	what	information	describes	the	state	of
an	asynchronous	application,	and	how	to	organize	it	in	a	single	tree.

We'll	start	with	the	most	common	use	case:	lists.	Web	applications	often	show	lists	of	things.	For	example,	a	list	of
posts,	or	a	list	of	friends.	You'll	need	to	figure	out	what	sorts	of	lists	your	app	can	show.	You	want	to	store	them
separately	in	the	state,	because	this	way	you	can	cache	them	and	only	fetch	again	if	necessary.

Here's	what	the	state	shape	for	our	“Reddit	headlines”	app	might	look	like:

{

		selectedSubreddit:	'frontend',

		postsBySubreddit:	{

				frontend:	{

						isFetching:	true,

						didInvalidate:	false,

						items:	[]

				},

				reactjs:	{

						isFetching:	false,

						didInvalidate:	false,

						lastUpdated:	1439478405547,

						items:	[

								{

										id:	42,

										title:	'Confusion	about	Flux	and	Relay'

								},

								{

										id:	500,

										title:	'Creating	a	Simple	Application	Using	React	JS	and	Flux	Architecture'

								}

]

				}

		}

}

There	are	a	few	important	bits	here:

We	store	each	subreddit's	information	separately	so	we	can	cache	every	subreddit.	When	the	user	switches
between	them	the	second	time,	the	update	will	be	instant,	and	we	won't	need	to	refetch	unless	we	want	to.	Don't
worry	about	all	these	items	being	in	memory:	unless	you're	dealing	with	tens	of	thousands	of	items,	and	your	user
rarely	closes	the	tab,	you	won't	need	any	sort	of	cleanup.

For	every	list	of	items,	you'll	want	to	store		isFetching		to	show	a	spinner,		didInvalidate		so	you	can	later	toggle
it	when	the	data	is	stale,		lastUpdated		so	you	know	when	it	was	fetched	the	last	time,	and	the		items	
themselves.	In	a	real	app,	you'll	also	want	to	store	pagination	state	like		fetchedPageCount		and		nextPageUrl	.

Note	on	Nested	Entities

In	this	example,	we	store	the	received	items	together	with	the	pagination	information.	However,	this	approach
won't	work	well	if	you	have	nested	entities	referencing	each	other,	or	if	you	let	the	user	edit	items.	Imagine	the
user	wants	to	edit	a	fetched	post,	but	this	post	is	duplicated	in	several	places	in	the	state	tree.	This	would	be
really	painful	to	implement.

Async	Actions

85

If	you	have	nested	entities,	or	if	you	let	users	edit	received	entities,	you	should	keep	them	separately	in	the
state	as	if	it	was	a	database.	In	pagination	information,	you	would	only	refer	to	them	by	their	IDs.	This	lets	you
always	keep	them	up	to	date.	The	real	world	example	shows	this	approach,	together	with	normalizr	to
normalize	the	nested	API	responses.	With	this	approach,	your	state	might	look	like	this:

{

		selectedSubreddit:	'frontend',

		entities:	{

				users:	{

						2:	{

								id:	2,

								name:	'Andrew'

						}

				},

				posts:	{

						42:	{

								id:	42,

								title:	'Confusion	about	Flux	and	Relay',

								author:	2

						},

						100:	{

								id:	100,

								title:	'Creating	a	Simple	Application	Using	React	JS	and	Flux	Architecture',

								author:	2

						}

				}

		},

		postsBySubreddit:	{

				frontend:	{

						isFetching:	true,

						didInvalidate:	false,

						items:	[]

				},

				reactjs:	{

						isFetching:	false,

						didInvalidate:	false,

						lastUpdated:	1439478405547,

						items:	[42,	100]

				}

		}

}

In	this	guide,	we	won't	normalize	entities,	but	it's	something	you	should	consider	for	a	more	dynamic
application.

Handling	Actions
Before	going	into	the	details	of	dispatching	actions	together	with	network	requests,	we	will	write	the	reducers	for	the
actions	we	defined	above.

Note	on	Reducer	Composition

Here,	we	assume	that	you	understand	reducer	composition	with		combineReducers()	,	as	described	in	the
Splitting	Reducers	section	on	the	basics	guide.	If	you	don't,	please	read	it	first.

	reducers.js	

import	{	combineReducers	}	from	'redux'

import	{

		SELECT_SUBREDDIT,

		INVALIDATE_SUBREDDIT,

		REQUEST_POSTS,

		RECEIVE_POSTS

}	from	'../actions'

Async	Actions

86

https://github.com/paularmstrong/normalizr

function	selectedSubreddit(state	=	'reactjs',	action)	{

		switch	(action.type)	{

				case	SELECT_SUBREDDIT:

						return	action.subreddit

				default:

						return	state

		}

}

function	posts(

		state	=	{

				isFetching:	false,

				didInvalidate:	false,

				items:	[]

		},

		action

)	{

		switch	(action.type)	{

				case	INVALIDATE_SUBREDDIT:

						return	Object.assign({},	state,	{

								didInvalidate:	true

						})

				case	REQUEST_POSTS:

						return	Object.assign({},	state,	{

								isFetching:	true,

								didInvalidate:	false

						})

				case	RECEIVE_POSTS:

						return	Object.assign({},	state,	{

								isFetching:	false,

								didInvalidate:	false,

								items:	action.posts,

								lastUpdated:	action.receivedAt

						})

				default:

						return	state

		}

}

function	postsBySubreddit(state	=	{},	action)	{

		switch	(action.type)	{

				case	INVALIDATE_SUBREDDIT:

				case	RECEIVE_POSTS:

				case	REQUEST_POSTS:

						return	Object.assign({},	state,	{

								[action.subreddit]:	posts(state[action.subreddit],	action)

						})

				default:

						return	state

		}

}

const	rootReducer	=	combineReducers({

		postsBySubreddit,

		selectedSubreddit

})

export	default	rootReducer

In	this	code,	there	are	two	interesting	parts:

We	use	ES6	computed	property	syntax	so	we	can	update		state[action.subreddit]		with		Object.assign()		in	a
concise	way.	This:

return	Object.assign({},	state,	{

		[action.subreddit]:	posts(state[action.subreddit],	action)

})

is	equivalent	to	this:

Async	Actions

87

let	nextState	=	{}

nextState[action.subreddit]	=	posts(state[action.subreddit],	action)

return	Object.assign({},	state,	nextState)

We	extracted		posts(state,	action)		that	manages	the	state	of	a	specific	post	list.	This	is	just	reducer
composition!	It	is	our	choice	how	to	split	the	reducer	into	smaller	reducers,	and	in	this	case,	we're	delegating
updating	items	inside	an	object	to	a		posts		reducer.	The	real	world	example	goes	even	further,	showing	how	to
create	a	reducer	factory	for	parameterized	pagination	reducers.

Remember	that	reducers	are	just	functions,	so	you	can	use	functional	composition	and	higher-order	functions	as
much	as	you	feel	comfortable.

Async	Action	Creators
Finally,	how	do	we	use	the	synchronous	action	creators	we	defined	earlier	together	with	network	requests?	The
standard	way	to	do	it	with	Redux	is	to	use	the	Redux	Thunk	middleware.	It	comes	in	a	separate	package	called
	redux-thunk	.	We'll	explain	how	middleware	works	in	general	later;	for	now,	there	is	just	one	important	thing	you	need
to	know:	by	using	this	specific	middleware,	an	action	creator	can	return	a	function	instead	of	an	action	object.	This
way,	the	action	creator	becomes	a	thunk.

When	an	action	creator	returns	a	function,	that	function	will	get	executed	by	the	Redux	Thunk	middleware.	This
function	doesn't	need	to	be	pure;	it	is	thus	allowed	to	have	side	effects,	including	executing	asynchronous	API	calls.
The	function	can	also	dispatch	actions—like	those	synchronous	actions	we	defined	earlier.

We	can	still	define	these	special	thunk	action	creators	inside	our		actions.js		file:

	actions.js		(Asynchronous)

import	fetch	from	'cross-fetch'

export	const	REQUEST_POSTS	=	'REQUEST_POSTS'

function	requestPosts(subreddit)	{

		return	{

				type:	REQUEST_POSTS,

				subreddit

		}

}

export	const	RECEIVE_POSTS	=	'RECEIVE_POSTS'

function	receivePosts(subreddit,	json)	{

		return	{

				type:	RECEIVE_POSTS,

				subreddit,

				posts:	json.data.children.map(child	=>	child.data),

				receivedAt:	Date.now()

		}

}

export	const	INVALIDATE_SUBREDDIT	=	'INVALIDATE_SUBREDDIT'

export	function	invalidateSubreddit(subreddit)	{

		return	{

				type:	INVALIDATE_SUBREDDIT,

				subreddit

		}

}

//	Meet	our	first	thunk	action	creator!

//	Though	its	insides	are	different,	you	would	use	it	just	like	any	other	action	creator:

//	store.dispatch(fetchPosts('reactjs'))

export	function	fetchPosts(subreddit)	{

		//	Thunk	middleware	knows	how	to	handle	functions.

Async	Actions

88

https://github.com/gaearon/redux-thunk
https://en.wikipedia.org/wiki/Thunk

		//	It	passes	the	dispatch	method	as	an	argument	to	the	function,

		//	thus	making	it	able	to	dispatch	actions	itself.

		return	function(dispatch)	{

				//	First	dispatch:	the	app	state	is	updated	to	inform

				//	that	the	API	call	is	starting.

				dispatch(requestPosts(subreddit))

				//	The	function	called	by	the	thunk	middleware	can	return	a	value,

				//	that	is	passed	on	as	the	return	value	of	the	dispatch	method.

				//	In	this	case,	we	return	a	promise	to	wait	for.

				//	This	is	not	required	by	thunk	middleware,	but	it	is	convenient	for	us.

				return	fetch(`https://www.reddit.com/r/${subreddit}.json`)

						.then(

								response	=>	response.json(),

								//	Do	not	use	catch,	because	that	will	also	catch

								//	any	errors	in	the	dispatch	and	resulting	render,

								//	causing	a	loop	of	'Unexpected	batch	number'	errors.

								//	https://github.com/facebook/react/issues/6895

								error	=>	console.log('An	error	occurred.',	error)

)

						.then(json	=>

								//	We	can	dispatch	many	times!

								//	Here,	we	update	the	app	state	with	the	results	of	the	API	call.

								dispatch(receivePosts(subreddit,	json))

)

		}

}

Note	on		fetch	

We	use		fetch		API	in	the	examples.	It	is	a	new	API	for	making	network	requests	that	replaces		XMLHttpRequest	
for	most	common	needs.	Because	most	browsers	don't	yet	support	it	natively,	we	suggest	that	you	use		cross-
fetch		library:

//	Do	this	in	every	file	where	you	use	`fetch`

import	fetch	from	'cross-fetch'

Internally,	it	uses		whatwg-fetch		polyfill	on	the	client,	and		node-fetch		on	the	server,	so	you	won't	need	to
change	API	calls	if	you	change	your	app	to	be	universal.

Be	aware	that	any		fetch		polyfill	assumes	a	Promise	polyfill	is	already	present.	The	easiest	way	to	ensure	you
have	a	Promise	polyfill	is	to	enable	Babel's	ES6	polyfill	in	your	entry	point	before	any	other	code	runs:

//	Do	this	once	before	any	other	code	in	your	app

import	'babel-polyfill'

How	do	we	include	the	Redux	Thunk	middleware	in	the	dispatch	mechanism?	We	use	the		applyMiddleware()		store
enhancer	from	Redux,	as	shown	below:

	index.js	

import	thunkMiddleware	from	'redux-thunk'

import	{	createLogger	}	from	'redux-logger'

import	{	createStore,	applyMiddleware	}	from	'redux'

import	{	selectSubreddit,	fetchPosts	}	from	'./actions'

import	rootReducer	from	'./reducers'

const	loggerMiddleware	=	createLogger()

const	store	=	createStore(

Async	Actions

89

https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://github.com/lquixada/cross-fetch
https://github.com/github/fetch
https://github.com/bitinn/node-fetch
https://medium.com/@mjackson/universal-javascript-4761051b7ae9
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

		rootReducer,

		applyMiddleware(

				thunkMiddleware,	//	lets	us	dispatch()	functions

				loggerMiddleware	//	neat	middleware	that	logs	actions

)

)

store.dispatch(selectSubreddit('reactjs'))

store.dispatch(fetchPosts('reactjs')).then(()	=>	console.log(store.getState()))

The	nice	thing	about	thunks	is	that	they	can	dispatch	results	of	each	other:

	actions.js		(with		fetch)

import	fetch	from	'cross-fetch'

export	const	REQUEST_POSTS	=	'REQUEST_POSTS'

function	requestPosts(subreddit)	{

		return	{

				type:	REQUEST_POSTS,

				subreddit

		}

}

export	const	RECEIVE_POSTS	=	'RECEIVE_POSTS'

function	receivePosts(subreddit,	json)	{

		return	{

				type:	RECEIVE_POSTS,

				subreddit,

				posts:	json.data.children.map(child	=>	child.data),

				receivedAt:	Date.now()

		}

}

export	const	INVALIDATE_SUBREDDIT	=	'INVALIDATE_SUBREDDIT'

export	function	invalidateSubreddit(subreddit)	{

		return	{

				type:	INVALIDATE_SUBREDDIT,

				subreddit

		}

}

function	fetchPosts(subreddit)	{

		return	dispatch	=>	{

				dispatch(requestPosts(subreddit))

				return	fetch(`https://www.reddit.com/r/${subreddit}.json`)

						.then(response	=>	response.json())

						.then(json	=>	dispatch(receivePosts(subreddit,	json)))

		}

}

function	shouldFetchPosts(state,	subreddit)	{

		const	posts	=	state.postsBySubreddit[subreddit]

		if	(!posts)	{

				return	true

		}	else	if	(posts.isFetching)	{

				return	false

		}	else	{

				return	posts.didInvalidate

		}

}

export	function	fetchPostsIfNeeded(subreddit)	{

		//	Note	that	the	function	also	receives	getState()

		//	which	lets	you	choose	what	to	dispatch	next.

		//	This	is	useful	for	avoiding	a	network	request	if

		//	a	cached	value	is	already	available.

		return	(dispatch,	getState)	=>	{

				if	(shouldFetchPosts(getState(),	subreddit))	{

Async	Actions

90

						//	Dispatch	a	thunk	from	thunk!

						return	dispatch(fetchPosts(subreddit))

				}	else	{

						//	Let	the	calling	code	know	there's	nothing	to	wait	for.

						return	Promise.resolve()

				}

		}

}

This	lets	us	write	more	sophisticated	async	control	flow	gradually,	while	the	consuming	code	can	stay	pretty	much	the
same:

	index.js	

store

		.dispatch(fetchPostsIfNeeded('reactjs'))

		.then(()	=>	console.log(store.getState()))

Note	about	Server	Rendering

Async	action	creators	are	especially	convenient	for	server	rendering.	You	can	create	a	store,	dispatch	a	single
async	action	creator	that	dispatches	other	async	action	creators	to	fetch	data	for	a	whole	section	of	your	app,
and	only	render	after	the	Promise	it	returns,	completes.	Then	your	store	will	already	be	hydrated	with	the	state
you	need	before	rendering.

Thunk	middleware	isn't	the	only	way	to	orchestrate	asynchronous	actions	in	Redux:

You	can	use	redux-promise	or	redux-promise-middleware	to	dispatch	Promises	instead	of	functions.
You	can	use	redux-observable	to	dispatch	Observables.
You	can	use	the	redux-saga	middleware	to	build	more	complex	asynchronous	actions.
You	can	use	the	redux-pack	middleware	to	dispatch	promise-based	asynchronous	actions.
You	can	even	write	a	custom	middleware	to	describe	calls	to	your	API,	like	the	real	world	example	does.

It	is	up	to	you	to	try	a	few	options,	choose	a	convention	you	like,	and	follow	it,	whether	with,	or	without	the	middleware.

Connecting	to	UI
Dispatching	async	actions	is	no	different	from	dispatching	synchronous	actions,	so	we	won't	discuss	this	in	detail.	See
Usage	with	React	for	an	introduction	into	using	Redux	from	React	components.	See	Example:	Reddit	API	for	the
complete	source	code	discussed	in	this	example.

Next	Steps
Read	Async	Flow	to	recap	how	async	actions	fit	into	the	Redux	flow.

Async	Actions

91

https://github.com/gaearon/redux-thunk
https://github.com/acdlite/redux-promise
https://github.com/pburtchaell/redux-promise-middleware
https://github.com/redux-observable/redux-observable
https://github.com/yelouafi/redux-saga/
https://github.com/lelandrichardson/redux-pack

Async	Flow
Without	middleware,	Redux	store	only	supports	synchronous	data	flow.	This	is	what	you	get	by	default	with
	createStore()	.

You	may	enhance		createStore()		with		applyMiddleware()	.	It	is	not	required,	but	it	lets	you	express	asynchronous
actions	in	a	convenient	way.

Asynchronous	middleware	like	redux-thunk	or	redux-promise	wraps	the	store's		dispatch()		method	and	allows	you	to
dispatch	something	other	than	actions,	for	example,	functions	or	Promises.	Any	middleware	you	use	can	then
intercept	anything	you	dispatch,	and	in	turn,	can	pass	actions	to	the	next	middleware	in	the	chain.	For	example,	a
Promise	middleware	can	intercept	Promises	and	dispatch	a	pair	of	begin/end	actions	asynchronously	in	response	to
each	Promise.

When	the	last	middleware	in	the	chain	dispatches	an	action,	it	has	to	be	a	plain	object.	This	is	when	the	synchronous
Redux	data	flow	takes	place.

Check	out	the	full	source	code	for	the	async	example.

Next	Steps
Now	that	you've	seen	an	example	of	what	middleware	can	do	in	Redux,	it's	time	to	learn	how	it	actually	works,	and
how	you	can	create	your	own.	Go	on	to	the	next	detailed	section	about	Middleware.

Async	Flow

92

https://github.com/gaearon/redux-thunk
https://github.com/acdlite/redux-promise

Middleware
You've	seen	middleware	in	action	in	the	Async	Actions	example.	If	you've	used	server-side	libraries	like	Express	and
Koa,	you	were	also	probably	already	familiar	with	the	concept	of	middleware.	In	these	frameworks,	middleware	is
some	code	you	can	put	between	the	framework	receiving	a	request,	and	the	framework	generating	a	response.	For
example,	Express	or	Koa	middleware	may	add	CORS	headers,	logging,	compression,	and	more.	The	best	feature	of
middleware	is	that	it's	composable	in	a	chain.	You	can	use	multiple	independent	third-party	middleware	in	a	single
project.

Redux	middleware	solves	different	problems	than	Express	or	Koa	middleware,	but	in	a	conceptually	similar	way.	It
provides	a	third-party	extension	point	between	dispatching	an	action,	and	the	moment	it	reaches	the	reducer.
People	use	Redux	middleware	for	logging,	crash	reporting,	talking	to	an	asynchronous	API,	routing,	and	more.

This	article	is	divided	into	an	in-depth	intro	to	help	you	grok	the	concept,	and	a	few	practical	examples	to	show	the
power	of	middleware	at	the	very	end.	You	may	find	it	helpful	to	switch	back	and	forth	between	them,	as	you	flip
between	feeling	bored	and	inspired.

Understanding	Middleware
While	middleware	can	be	used	for	a	variety	of	things,	including	asynchronous	API	calls,	it's	really	important	that	you
understand	where	it	comes	from.	We'll	guide	you	through	the	thought	process	leading	to	middleware,	by	using	logging
and	crash	reporting	as	examples.

Problem:	Logging

One	of	the	benefits	of	Redux	is	that	it	makes	state	changes	predictable	and	transparent.	Every	time	an	action	is
dispatched,	the	new	state	is	computed	and	saved.	The	state	cannot	change	by	itself,	it	can	only	change	as	a
consequence	of	a	specific	action.

Wouldn't	it	be	nice	if	we	logged	every	action	that	happens	in	the	app,	together	with	the	state	computed	after	it?	When
something	goes	wrong,	we	can	look	back	at	our	log,	and	figure	out	which	action	corrupted	the	state.

How	do	we	approach	this	with	Redux?

Attempt	#1:	Logging	Manually

Middleware

93

http://expressjs.com/
http://koajs.com/

The	most	naïve	solution	is	just	to	log	the	action	and	the	next	state	yourself	every	time	you	call
	store.dispatch(action)	.	It's	not	really	a	solution,	but	just	a	first	step	towards	understanding	the	problem.

Note

If	you're	using	react-redux	or	similar	bindings,	you	likely	won't	have	direct	access	to	the	store	instance	in	your
components.	For	the	next	few	paragraphs,	just	assume	you	pass	the	store	down	explicitly.

Say,	you	call	this	when	creating	a	todo:

store.dispatch(addTodo('Use	Redux'))

To	log	the	action	and	state,	you	can	change	it	to	something	like	this:

const	action	=	addTodo('Use	Redux')

console.log('dispatching',	action)

store.dispatch(action)

console.log('next	state',	store.getState())

This	produces	the	desired	effect,	but	you	wouldn't	want	to	do	it	every	time.

Attempt	#2:	Wrapping	Dispatch

You	can	extract	logging	into	a	function:

function	dispatchAndLog(store,	action)	{

		console.log('dispatching',	action)

		store.dispatch(action)

		console.log('next	state',	store.getState())

}

You	can	then	use	it	everywhere	instead	of		store.dispatch()	:

dispatchAndLog(store,	addTodo('Use	Redux'))

We	could	end	this	here,	but	it's	not	very	convenient	to	import	a	special	function	every	time.

Attempt	#3:	Monkeypatching	Dispatch

What	if	we	just	replace	the		dispatch		function	on	the	store	instance?	The	Redux	store	is	just	a	plain	object	with	a	few
methods,	and	we're	writing	JavaScript,	so	we	can	just	monkeypatch	the		dispatch		implementation:

const	next	=	store.dispatch

store.dispatch	=	function	dispatchAndLog(action)	{

		console.log('dispatching',	action)

		let	result	=	next(action)

		console.log('next	state',	store.getState())

		return	result

}

This	is	already	closer	to	what	we	want!	No	matter	where	we	dispatch	an	action,	it	is	guaranteed	to	be	logged.
Monkeypatching	never	feels	right,	but	we	can	live	with	this	for	now.

Problem:	Crash	Reporting

What	if	we	want	to	apply	more	than	one	such	transformation	to		dispatch	?

Middleware

94

https://github.com/reduxjs/react-redux

A	different	useful	transformation	that	comes	to	my	mind	is	reporting	JavaScript	errors	in	production.	The	global
	window.onerror		event	is	not	reliable	because	it	doesn't	provide	stack	information	in	some	older	browsers,	which	is
crucial	to	understand	why	an	error	is	happening.

Wouldn't	it	be	useful	if,	any	time	an	error	is	thrown	as	a	result	of	dispatching	an	action,	we	would	send	it	to	a	crash
reporting	service	like	Sentry	with	the	stack	trace,	the	action	that	caused	the	error,	and	the	current	state?	This	way	it's
much	easier	to	reproduce	the	error	in	development.

However,	it	is	important	that	we	keep	logging	and	crash	reporting	separate.	Ideally	we	want	them	to	be	different
modules,	potentially	in	different	packages.	Otherwise	we	can't	have	an	ecosystem	of	such	utilities.	(Hint:	we're	slowly
getting	to	what	middleware	is!)

If	logging	and	crash	reporting	are	separate	utilities,	they	might	look	like	this:

function	patchStoreToAddLogging(store)	{

		const	next	=	store.dispatch

		store.dispatch	=	function	dispatchAndLog(action)	{

				console.log('dispatching',	action)

				let	result	=	next(action)

				console.log('next	state',	store.getState())

				return	result

		}

}

function	patchStoreToAddCrashReporting(store)	{

		const	next	=	store.dispatch

		store.dispatch	=	function	dispatchAndReportErrors(action)	{

				try	{

						return	next(action)

				}	catch	(err)	{

						console.error('Caught	an	exception!',	err)

						Raven.captureException(err,	{

								extra:	{

										action,

										state:	store.getState()

								}

						})

						throw	err

				}

		}

}

If	these	functions	are	published	as	separate	modules,	we	can	later	use	them	to	patch	our	store:

patchStoreToAddLogging(store)

patchStoreToAddCrashReporting(store)

Still,	this	isn't	nice.

Attempt	#4:	Hiding	Monkeypatching

Monkeypatching	is	a	hack.	“Replace	any	method	you	like”,	what	kind	of	API	is	that?	Let's	figure	out	the	essence	of	it
instead.	Previously,	our	functions	replaced		store.dispatch	.	What	if	they	returned	the	new		dispatch		function
instead?

function	logger(store)	{

		const	next	=	store.dispatch

		//	Previously:

		//	store.dispatch	=	function	dispatchAndLog(action)	{

		return	function	dispatchAndLog(action)	{

				console.log('dispatching',	action)

				let	result	=	next(action)

Middleware

95

https://getsentry.com/welcome/

				console.log('next	state',	store.getState())

				return	result

		}

}

We	could	provide	a	helper	inside	Redux	that	would	apply	the	actual	monkeypatching	as	an	implementation	detail:

function	applyMiddlewareByMonkeypatching(store,	middlewares)	{

		middlewares	=	middlewares.slice()

		middlewares.reverse()

		//	Transform	dispatch	function	with	each	middleware.

		middlewares.forEach(middleware	=>	(store.dispatch	=	middleware(store)))

}

We	could	use	it	to	apply	multiple	middleware	like	this:

applyMiddlewareByMonkeypatching(store,	[logger,	crashReporter])

However,	it	is	still	monkeypatching.
The	fact	that	we	hide	it	inside	the	library	doesn't	alter	this	fact.

Attempt	#5:	Removing	Monkeypatching

Why	do	we	even	overwrite		dispatch	?	Of	course,	to	be	able	to	call	it	later,	but	there's	also	another	reason:	so	that
every	middleware	can	access	(and	call)	the	previously	wrapped		store.dispatch	:

function	logger(store)	{

		//	Must	point	to	the	function	returned	by	the	previous	middleware:

		const	next	=	store.dispatch

		return	function	dispatchAndLog(action)	{

				console.log('dispatching',	action)

				let	result	=	next(action)

				console.log('next	state',	store.getState())

				return	result

		}

}

It	is	essential	to	chaining	middleware!

If		applyMiddlewareByMonkeypatching		doesn't	assign		store.dispatch		immediately	after	processing	the	first	middleware,
	store.dispatch		will	keep	pointing	to	the	original		dispatch		function.	Then	the	second	middleware	will	also	be	bound
to	the	original		dispatch		function.

But	there's	also	a	different	way	to	enable	chaining.	The	middleware	could	accept	the		next()		dispatch	function	as	a
parameter	instead	of	reading	it	from	the		store		instance.

function	logger(store)	{

		return	function	wrapDispatchToAddLogging(next)	{

				return	function	dispatchAndLog(action)	{

						console.log('dispatching',	action)

						let	result	=	next(action)

						console.log('next	state',	store.getState())

						return	result

				}

		}

}

It's	a	“we	need	to	go	deeper”	kind	of	moment,	so	it	might	take	a	while	for	this	to	make	sense.	The	function	cascade
feels	intimidating.	ES6	arrow	functions	make	this	currying	easier	on	eyes:

Middleware

96

http://knowyourmeme.com/memes/we-need-to-go-deeper
https://en.wikipedia.org/wiki/Currying

const	logger	=	store	=>	next	=>	action	=>	{

		console.log('dispatching',	action)

		let	result	=	next(action)

		console.log('next	state',	store.getState())

		return	result

}

const	crashReporter	=	store	=>	next	=>	action	=>	{

		try	{

				return	next(action)

		}	catch	(err)	{

				console.error('Caught	an	exception!',	err)

				Raven.captureException(err,	{

						extra:	{

								action,

								state:	store.getState()

						}

				})

				throw	err

		}

}

This	is	exactly	what	Redux	middleware	looks	like.

Now	middleware	takes	the		next()		dispatch	function,	and	returns	a	dispatch	function,	which	in	turn	serves	as		next()	
to	the	middleware	to	the	left,	and	so	on.	It's	still	useful	to	have	access	to	some	store	methods	like		getState()	,	so
	store		stays	available	as	the	top-level	argument.

Attempt	#6:	Naïvely	Applying	the	Middleware

Instead	of		applyMiddlewareByMonkeypatching()	,	we	could	write		applyMiddleware()		that	first	obtains	the	final,	fully
wrapped		dispatch()		function,	and	returns	a	copy	of	the	store	using	it:

//	Warning:	Naïve	implementation!

//	That's	*not*	Redux	API.

function	applyMiddleware(store,	middlewares)	{

		middlewares	=	middlewares.slice()

		middlewares.reverse()

		let	dispatch	=	store.dispatch

		middlewares.forEach(middleware	=>	(dispatch	=	middleware(store)(dispatch)))

		return	Object.assign({},	store,	{	dispatch	})

}

The	implementation	of		applyMiddleware()		that	ships	with	Redux	is	similar,	but	different	in	three	important	aspects:

It	only	exposes	a	subset	of	the	store	API	to	the	middleware:		dispatch(action)		and		getState()	.

It	does	a	bit	of	trickery	to	make	sure	that	if	you	call		store.dispatch(action)		from	your	middleware	instead	of
	next(action)	,	the	action	will	actually	travel	the	whole	middleware	chain	again,	including	the	current	middleware.
This	is	useful	for	asynchronous	middleware,	as	we	have	seen	previously.	There	is	one	caveat	when	calling
	dispatch		during	setup,	described	below.

To	ensure	that	you	may	only	apply	middleware	once,	it	operates	on		createStore()		rather	than	on		store		itself.
Instead	of		(store,	middlewares)	=>	store	,	its	signature	is		(...middlewares)	=>	(createStore)	=>	createStore	.

Because	it	is	cumbersome	to	apply	functions	to		createStore()		before	using	it,		createStore()		accepts	an	optional
last	argument	to	specify	such	functions.

Caveat:	Dispatching	During	Setup

Middleware

97

While		applyMiddleware		executes	and	sets	up	your	middleware,	the		store.dispatch		function	will	point	to	the	vanilla
version	provided	by		createStore	.	Dispatching	would	result	in	no	other	middleware	being	applied.	If	you	are	expecting
an	interaction	with	another	middleware	during	setup,	you	will	probably	be	disappointed.	Because	of	this	unexpected
behavior,		applyMiddleware		will	throw	an	error	if	you	try	to	dispatch	an	action	before	the	set	up	completes.	Instead,
you	should	either	communicate	directly	with	that	other	middleware	via	a	common	object	(for	an	API-calling
middleware,	this	may	be	your	API	client	object)	or	waiting	until	after	the	middleware	is	constructed	with	a	callback.

The	Final	Approach

Given	this	middleware	we	just	wrote:

const	logger	=	store	=>	next	=>	action	=>	{

		console.log('dispatching',	action)

		let	result	=	next(action)

		console.log('next	state',	store.getState())

		return	result

}

const	crashReporter	=	store	=>	next	=>	action	=>	{

		try	{

				return	next(action)

		}	catch	(err)	{

				console.error('Caught	an	exception!',	err)

				Raven.captureException(err,	{

						extra:	{

								action,

								state:	store.getState()

						}

				})

				throw	err

		}

}

Here's	how	to	apply	it	to	a	Redux	store:

import	{	createStore,	combineReducers,	applyMiddleware	}	from	'redux'

const	todoApp	=	combineReducers(reducers)

const	store	=	createStore(

		todoApp,

		//	applyMiddleware()	tells	createStore()	how	to	handle	middleware

		applyMiddleware(logger,	crashReporter)

)

That's	it!	Now	any	actions	dispatched	to	the	store	instance	will	flow	through		logger		and		crashReporter	:

//	Will	flow	through	both	logger	and	crashReporter	middleware!

store.dispatch(addTodo('Use	Redux'))

Seven	Examples
If	your	head	boiled	from	reading	the	above	section,	imagine	what	it	was	like	to	write	it.	This	section	is	meant	to	be	a
relaxation	for	you	and	me,	and	will	help	get	your	gears	turning.

Each	function	below	is	a	valid	Redux	middleware.	They	are	not	equally	useful,	but	at	least	they	are	equally	fun.

/**

	*	Logs	all	actions	and	states	after	they	are	dispatched.

	*/

const	logger	=	store	=>	next	=>	action	=>	{

		console.group(action.type)

Middleware

98

		console.info('dispatching',	action)

		let	result	=	next(action)

		console.log('next	state',	store.getState())

		console.groupEnd()

		return	result

}

/**

	*	Sends	crash	reports	as	state	is	updated	and	listeners	are	notified.

	*/

const	crashReporter	=	store	=>	next	=>	action	=>	{

		try	{

				return	next(action)

		}	catch	(err)	{

				console.error('Caught	an	exception!',	err)

				Raven.captureException(err,	{

						extra:	{

								action,

								state:	store.getState()

						}

				})

				throw	err

		}

}

/**

	*	Schedules	actions	with	{	meta:	{	delay:	N	}	}	to	be	delayed	by	N	milliseconds.

	*	Makes	`dispatch`	return	a	function	to	cancel	the	timeout	in	this	case.

	*/

const	timeoutScheduler	=	store	=>	next	=>	action	=>	{

		if	(!action.meta	||	!action.meta.delay)	{

				return	next(action)

		}

		const	timeoutId	=	setTimeout(()	=>	next(action),	action.meta.delay)

		return	function	cancel()	{

				clearTimeout(timeoutId)

		}

}

/**

	*	Schedules	actions	with	{	meta:	{	raf:	true	}	}	to	be	dispatched	inside	a	rAF	loop

	*	frame.		Makes	`dispatch`	return	a	function	to	remove	the	action	from	the	queue	in

	*	this	case.

	*/

const	rafScheduler	=	store	=>	next	=>	{

		const	queuedActions	=	[]

		let	frame	=	null

		function	loop()	{

				frame	=	null

				try	{

						if	(queuedActions.length)	{

								next(queuedActions.shift())

						}

				}	finally	{

						maybeRaf()

				}

		}

		function	maybeRaf()	{

				if	(queuedActions.length	&&	!frame)	{

						frame	=	requestAnimationFrame(loop)

				}

		}

		return	action	=>	{

				if	(!action.meta	||	!action.meta.raf)	{

						return	next(action)

				}

				queuedActions.push(action)

				maybeRaf()

Middleware

99

				return	function	cancel()	{

						queuedActions	=	queuedActions.filter(a	=>	a	!==	action)

				}

		}

}

/**

	*	Lets	you	dispatch	promises	in	addition	to	actions.

	*	If	the	promise	is	resolved,	its	result	will	be	dispatched	as	an	action.

	*	The	promise	is	returned	from	`dispatch`	so	the	caller	may	handle	rejection.

	*/

const	vanillaPromise	=	store	=>	next	=>	action	=>	{

		if	(typeof	action.then	!==	'function')	{

				return	next(action)

		}

		return	Promise.resolve(action).then(store.dispatch)

}

/**

	*	Lets	you	dispatch	special	actions	with	a	{	promise	}	field.

	*

	*	This	middleware	will	turn	them	into	a	single	action	at	the	beginning,

	*	and	a	single	success	(or	failure)	action	when	the	`promise`	resolves.

	*

	*	For	convenience,	`dispatch`	will	return	the	promise	so	the	caller	can	wait.

	*/

const	readyStatePromise	=	store	=>	next	=>	action	=>	{

		if	(!action.promise)	{

				return	next(action)

		}

		function	makeAction(ready,	data)	{

				const	newAction	=	Object.assign({},	action,	{	ready	},	data)

				delete	newAction.promise

				return	newAction

		}

		next(makeAction(false))

		return	action.promise.then(

				result	=>	next(makeAction(true,	{	result	})),

				error	=>	next(makeAction(true,	{	error	}))

)

}

/**

	*	Lets	you	dispatch	a	function	instead	of	an	action.

	*	This	function	will	receive	`dispatch`	and	`getState`	as	arguments.

	*

	*	Useful	for	early	exits	(conditions	over	`getState()`),	as	well

	*	as	for	async	control	flow	(it	can	`dispatch()`	something	else).

	*

	*	`dispatch`	will	return	the	return	value	of	the	dispatched	function.

	*/

const	thunk	=	store	=>	next	=>	action	=>

		typeof	action	===	'function'

				?	action(store.dispatch,	store.getState)

				:	next(action)

//	You	can	use	all	of	them!	(It	doesn't	mean	you	should.)

const	todoApp	=	combineReducers(reducers)

const	store	=	createStore(

		todoApp,

		applyMiddleware(

				rafScheduler,

				timeoutScheduler,

				thunk,

				vanillaPromise,

				readyStatePromise,

				logger,

				crashReporter

)

)

Middleware

100

Middleware

101

Usage	with	React	Router
So	you	want	to	do	routing	with	your	Redux	app.	You	can	use	it	with	React	Router.	Redux	will	be	the	source	of	truth	for
your	data	and	React	Router	will	be	the	source	of	truth	for	your	URL.	In	most	of	the	cases,	it	is	fine	to	have	them
separate	unless	you	need	to	time	travel	and	rewind	actions	that	trigger	a	URL	change.

Installing	React	Router
	react-router-dom		is	available	on	npm	.	This	guides	assumes	you	are	using		react-router-dom@^4.1.1	.

	npm	install	--save	react-router-dom	

Configuring	the	Fallback	URL
Before	integrating	React	Router,	we	need	to	configure	our	development	server.	Indeed,	our	development	server	may
be	unaware	of	the	declared	routes	in	React	Router	configuration.	For	example,	if	you	access		/todos		and	refresh,
your	development	server	needs	to	be	instructed	to	serve		index.html		because	it	is	a	single-page	app.	Here's	how	to
enable	this	with	popular	development	servers.

Note	on	Create	React	App

If	you	are	using	Create	React	App,	you	won't	need	to	configure	a	fallback	URL,	it	is	automatically	done.

Configuring	Express

If	you	are	serving	your		index.html		from	Express:

app.get('/*',	(req,	res)	=>	{

		res.sendFile(path.join(__dirname,	'index.html'))

})

Configuring	WebpackDevServer

If	you	are	serving	your		index.html		from	WebpackDevServer:	You	can	add	to	your	webpack.config.dev.js:

devServer:	{

		historyApiFallback:	true

}

Connecting	React	Router	with	Redux	App
Along	this	chapter,	we	will	be	using	the	Todos	example.	We	recommend	you	to	clone	it	while	reading	this	chapter.

First	we	will	need	to	import		<Router	/>		and		<Route	/>		from	React	Router.	Here's	how	to	do	it:

import	{	BrowserRouter	as	Router,	Route	}	from	'react-router-dom'

Usage	with	React	Router

102

https://github.com/ReactTraining/react-router
https://github.com/reduxjs/redux/tree/master/examples/todos

In	a	React	app,	usually	you	would	wrap		<Route	/>		in		<Router	/>		so	that	when	the	URL	changes,		<Router	/>		will
match	a	branch	of	its	routes,	and	render	their	configured	components.		<Route	/>		is	used	to	declaratively	map	routes
to	your	application's	component	hierarchy.	You	would	declare	in		path		the	path	used	in	the	URL	and	in		component	
the	single	component	to	be	rendered	when	the	route	matches	the	URL.

const	Root	=	()	=>	(

		<Router>

				<Route	path="/"	component={App}	/>

		</Router>

)

However,	in	our	Redux	App	we	will	still	need		<Provider	/>	.		<Provider	/>		is	the	higher-order	component	provided	by
React	Redux	that	lets	you	bind	Redux	to	React	(see	Usage	with	React).

We	will	then	import	the		<Provider	/>		from	React	Redux:

import	{	Provider	}	from	'react-redux'

We	will	wrap		<Router	/>		in		<Provider	/>		so	that	route	handlers	can	get	access	to	the		store	.

const	Root	=	({	store	})	=>	(

		<Provider	store={store}>

				<Router>

						<Route	path="/"	component={App}	/>

				</Router>

		</Provider>

)

Now	the		<App	/>		component	will	be	rendered	if	the	URL	matches	'/'.	Additionally,	we	will	add	the	optional		:filter?	
parameter	to		/	,	because	we	will	need	it	further	on	when	we	try	to	read	the	parameter		:filter		from	the	URL.

<Route	path="/:filter?"	component={App}	/>

	components/Root.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	{	Provider	}	from	'react-redux'

import	{	BrowserRouter	as	Router,	Route	}	from	'react-router-dom'

import	App	from	'./App'

const	Root	=	({	store	})	=>	(

		<Provider	store={store}>

				<Router>

						<Route	path="/:filter?"	component={App}	/>

				</Router>

		</Provider>

)

Root.propTypes	=	{

		store:	PropTypes.object.isRequired

}

export	default	Root

We	will	also	need	to	refactor		index.js		to	render	the		<Root	/>		component	to	the	DOM.

	index.js	

import	React	from	'react'

Usage	with	React	Router

103

import	{	render	}	from	'react-dom'

import	{	createStore	}	from	'redux'

import	todoApp	from	'./reducers'

import	Root	from	'./components/Root'

const	store	=	createStore(todoApp)

render(<Root	store={store}	/>,	document.getElementById('root'))

Navigating	with	React	Router
React	Router	comes	with	a		<Link	/>		component	that	lets	you	navigate	around	your	application.	If	you	want	to	add
some	styles,		react-router-dom		has	another	special		<Link	/>		called		<NavLink	/>	,	which	accepts	styling	props.	For
instance,	the		activeStyle		property	lets	us	apply	a	style	on	the	active	state.

In	our	example,	we	can	wrap		<NavLink	/>		with	a	new	container	component		<FilterLink	/>		so	as	to	dynamically
change	the	URL.

	containers/FilterLink.js	

import	React	from	'react'

import	{	NavLink	}	from	'react-router-dom'

const	FilterLink	=	({	filter,	children	})	=>	(

		<NavLink

				to={filter	===	'SHOW_ALL'	?	'/'	:	`/${filter}`}

				activeStyle={{

						textDecoration:	'none',

						color:	'black'

				}}

		>

				{children}

		</NavLink>

)

export	default	FilterLink

	components/Footer.js	

import	React	from	'react'

import	FilterLink	from	'../containers/FilterLink'

import	{	VisibilityFilters	}	from	'../actions'

const	Footer	=	()	=>	(

		<p>

				Show:	<FilterLink	filter={VisibilityFilters.SHOW_ALL}>All</FilterLink>

				{',	'}

				<FilterLink	filter={VisibilityFilters.SHOW_ACTIVE}>Active</FilterLink>

				{',	'}

				<FilterLink	filter={VisibilityFilters.SHOW_COMPLETED}>Completed</FilterLink>

		</p>

)

export	default	Footer

Now	if	you	click	on		<FilterLink	/>		you	will	see	that	your	URL	will	change	between		'/SHOW_COMPLETED'	,
	'/SHOW_ACTIVE'	,	and		'/'	.	Even	if	you	are	going	back	with	your	browser,	it	will	use	your	browser's	history	and
effectively	go	to	your	previous	URL.

Reading	From	the	URL

Usage	with	React	Router

104

https://reacttraining.com/react-router/web/api/Link
https://reacttraining.com/react-router/web/api/NavLink

Currently,	the	todo	list	is	not	filtered	even	after	the	URL	changed.	This	is	because	we	are	filtering	from
	<VisibleTodoList	/>	's		mapStateToProps()	,	which	is	still	bound	to	the		state		and	not	to	the	URL.		mapStateToProps	
has	an	optional	second	argument		ownProps		that	is	an	object	with	every	props	passed	to		<VisibleTodoList	/>	

	containers/VisibleTodoList.js	

const	mapStateToProps	=	(state,	ownProps)	=>	{

		return	{

				todos:	getVisibleTodos(state.todos,	ownProps.filter)	//	previously	was	getVisibleTodos(state.todos,	state.v

isibilityFilter)

		}

}

Right	now	we	are	not	passing	anything	to		<App	/>		so		ownProps		is	an	empty	object.	To	filter	our	todos	according	to
the	URL,	we	want	to	pass	the	URL	params	to		<VisibleTodoList	/>	.

When	previously	we	wrote:		<Route	path="/:filter?"	component={App}	/>	,	it	made	available	inside		App		a		params	
property.

	params		property	is	an	object	with	every	param	specified	in	the	url	with	the		match		object.	e.g:		match.params		will	be
equal	to		{	filter:	'SHOW_COMPLETED'	}		if	we	are	navigating	to		localhost:3000/SHOW_COMPLETED	.	We	can	now	read	the
URL	from		<App	/>	.

Note	that	we	are	using	ES6	destructuring	on	the	properties	to	pass	in		params		to		<VisibleTodoList	/>	.

	components/App.js	

const	App	=	({	match:	{	params	}	})	=>	{

		return	(

				<div>

						<AddTodo	/>

						<VisibleTodoList	filter={params.filter	||	'SHOW_ALL'}	/>

						<Footer	/>

				</div>

)

}

Next	Steps
Now	that	you	know	how	to	do	basic	routing,	you	can	learn	more	about	React	Router	API

Note	About	Other	Routing	Libraries

Redux	Router	is	an	experimental	library,	it	lets	you	keep	entirely	the	state	of	your	URL	inside	your	redux	store.
It	has	the	same	API	with	React	Router	API	but	has	a	smaller	community	support	than	react-router.

React	Router	Redux	creates	a	binding	between	your	redux	app	and	react-router	and	it	keeps	them	in	sync.
Without	this	binding,	you	will	not	be	able	to	rewind	the	actions	with	Time	Travel.	Unless	you	need	this,	React
Router	and	Redux	can	operate	completely	apart.

Usage	with	React	Router

105

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://reacttraining.com/react-router/

Example:	Reddit	API
This	is	the	complete	source	code	of	the	Reddit	headline	fetching	example	we	built	during	the	advanced	tutorial.

Entry	Point

	index.js	

import	'babel-polyfill'

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	Root	from	'./containers/Root'

render(<Root	/>,	document.getElementById('root'))

Action	Creators	and	Constants

	actions.js	

import	fetch	from	'cross-fetch'

export	const	REQUEST_POSTS	=	'REQUEST_POSTS'

export	const	RECEIVE_POSTS	=	'RECEIVE_POSTS'

export	const	SELECT_SUBREDDIT	=	'SELECT_SUBREDDIT'

export	const	INVALIDATE_SUBREDDIT	=	'INVALIDATE_SUBREDDIT'

export	function	selectSubreddit(subreddit)	{

		return	{

				type:	SELECT_SUBREDDIT,

				subreddit

		}

}

export	function	invalidateSubreddit(subreddit)	{

		return	{

				type:	INVALIDATE_SUBREDDIT,

				subreddit

		}

}

function	requestPosts(subreddit)	{

		return	{

				type:	REQUEST_POSTS,

				subreddit

		}

}

function	receivePosts(subreddit,	json)	{

		return	{

				type:	RECEIVE_POSTS,

				subreddit,

				posts:	json.data.children.map(child	=>	child.data),

				receivedAt:	Date.now()

		}

}

function	fetchPosts(subreddit)	{

		return	dispatch	=>	{

				dispatch(requestPosts(subreddit))

				return	fetch(`https://www.reddit.com/r/${subreddit}.json`)

						.then(response	=>	response.json())

Example:	Reddit	API

106

						.then(json	=>	dispatch(receivePosts(subreddit,	json)))

		}

}

function	shouldFetchPosts(state,	subreddit)	{

		const	posts	=	state.postsBySubreddit[subreddit]

		if	(!posts)	{

				return	true

		}	else	if	(posts.isFetching)	{

				return	false

		}	else	{

				return	posts.didInvalidate

		}

}

export	function	fetchPostsIfNeeded(subreddit)	{

		return	(dispatch,	getState)	=>	{

				if	(shouldFetchPosts(getState(),	subreddit))	{

						return	dispatch(fetchPosts(subreddit))

				}

		}

}

Reducers
	reducers.js	

import	{	combineReducers	}	from	'redux'

import	{

		SELECT_SUBREDDIT,

		INVALIDATE_SUBREDDIT,

		REQUEST_POSTS,

		RECEIVE_POSTS

}	from	'./actions'

function	selectedSubreddit(state	=	'reactjs',	action)	{

		switch	(action.type)	{

				case	SELECT_SUBREDDIT:

						return	action.subreddit

				default:

						return	state

		}

}

function	posts(

		state	=	{

				isFetching:	false,

				didInvalidate:	false,

				items:	[]

		},

		action

)	{

		switch	(action.type)	{

				case	INVALIDATE_SUBREDDIT:

						return	Object.assign({},	state,	{

								didInvalidate:	true

						})

				case	REQUEST_POSTS:

						return	Object.assign({},	state,	{

								isFetching:	true,

								didInvalidate:	false

						})

				case	RECEIVE_POSTS:

						return	Object.assign({},	state,	{

								isFetching:	false,

								didInvalidate:	false,

								items:	action.posts,

								lastUpdated:	action.receivedAt

						})

				default:

Example:	Reddit	API

107

						return	state

		}

}

function	postsBySubreddit(state	=	{},	action)	{

		switch	(action.type)	{

				case	INVALIDATE_SUBREDDIT:

				case	RECEIVE_POSTS:

				case	REQUEST_POSTS:

						return	Object.assign({},	state,	{

								[action.subreddit]:	posts(state[action.subreddit],	action)

						})

				default:

						return	state

		}

}

const	rootReducer	=	combineReducers({

		postsBySubreddit,

		selectedSubreddit

})

export	default	rootReducer

Store
	configureStore.js	

import	{	createStore,	applyMiddleware	}	from	'redux'

import	thunkMiddleware	from	'redux-thunk'

import	{	createLogger	}	from	'redux-logger'

import	rootReducer	from	'./reducers'

const	loggerMiddleware	=	createLogger()

export	default	function	configureStore(preloadedState)	{

		return	createStore(

				rootReducer,

				preloadedState,

				applyMiddleware(thunkMiddleware,	loggerMiddleware)

)

}

Container	Components

	containers/Root.js	

import	React,	{	Component	}	from	'react'

import	{	Provider	}	from	'react-redux'

import	configureStore	from	'../configureStore'

import	AsyncApp	from	'./AsyncApp'

const	store	=	configureStore()

export	default	class	Root	extends	Component	{

		render()	{

				return	(

						<Provider	store={store}>

								<AsyncApp	/>

						</Provider>

)

		}

}

Example:	Reddit	API

108

	containers/AsyncApp.js	

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

import	{	connect	}	from	'react-redux'

import	{

		selectSubreddit,

		fetchPostsIfNeeded,

		invalidateSubreddit

}	from	'../actions'

import	Picker	from	'../components/Picker'

import	Posts	from	'../components/Posts'

class	AsyncApp	extends	Component	{

		constructor(props)	{

				super(props)

				this.handleChange	=	this.handleChange.bind(this)

				this.handleRefreshClick	=	this.handleRefreshClick.bind(this)

		}

		componentDidMount()	{

				const	{	dispatch,	selectedSubreddit	}	=	this.props

				dispatch(fetchPostsIfNeeded(selectedSubreddit))

		}

		componentDidUpdate(prevProps)	{

				if	(this.props.selectedSubreddit	!==	prevProps.selectedSubreddit)	{

						const	{	dispatch,	selectedSubreddit	}	=	this.props

						dispatch(fetchPostsIfNeeded(selectedSubreddit))

				}

		}

		handleChange(nextSubreddit)	{

				this.props.dispatch(selectSubreddit(nextSubreddit))

				this.props.dispatch(fetchPostsIfNeeded(nextSubreddit))

		}

		handleRefreshClick(e)	{

				e.preventDefault()

				const	{	dispatch,	selectedSubreddit	}	=	this.props

				dispatch(invalidateSubreddit(selectedSubreddit))

				dispatch(fetchPostsIfNeeded(selectedSubreddit))

		}

		render()	{

				const	{	selectedSubreddit,	posts,	isFetching,	lastUpdated	}	=	this.props

				return	(

						<div>

								<Picker

										value={selectedSubreddit}

										onChange={this.handleChange}

										options={['reactjs',	'frontend']}

								/>

								<p>

										{lastUpdated	&&	(

												

														Last	updated	at	{new	Date(lastUpdated).toLocaleTimeString()}.{'	'}

												

)}

										{!isFetching	&&	(

												<button	onClick={this.handleRefreshClick}>Refresh</button>

)}

								</p>

								{isFetching	&&	posts.length	===	0	&&	<h2>Loading...</h2>}

								{!isFetching	&&	posts.length	===	0	&&	<h2>Empty.</h2>}

								{posts.length	>	0	&&	(

										<div	style={{	opacity:	isFetching	?	0.5	:	1	}}>

												<Posts	posts={posts}	/>

										</div>

)}

						</div>

)

Example:	Reddit	API

109

		}

}

AsyncApp.propTypes	=	{

		selectedSubreddit:	PropTypes.string.isRequired,

		posts:	PropTypes.array.isRequired,

		isFetching:	PropTypes.bool.isRequired,

		lastUpdated:	PropTypes.number,

		dispatch:	PropTypes.func.isRequired

}

function	mapStateToProps(state)	{

		const	{	selectedSubreddit,	postsBySubreddit	}	=	state

		const	{	isFetching,	lastUpdated,	items:	posts	}	=	postsBySubreddit[

				selectedSubreddit

]	||	{

				isFetching:	true,

				items:	[]

		}

		return	{

				selectedSubreddit,

				posts,

				isFetching,

				lastUpdated

		}

}

export	default	connect(mapStateToProps)(AsyncApp)

Presentational	Components
	components/Picker.js	

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

export	default	class	Picker	extends	Component	{

		render()	{

				const	{	value,	onChange,	options	}	=	this.props

				return	(

						

								<h1>{value}</h1>

								<select	onChange={e	=>	onChange(e.target.value)}	value={value}>

										{options.map(option	=>	(

												<option	value={option}	key={option}>

														{option}

												</option>

))}

								</select>

						

)

		}

}

Picker.propTypes	=	{

		options:	PropTypes.arrayOf(PropTypes.string.isRequired).isRequired,

		value:	PropTypes.string.isRequired,

		onChange:	PropTypes.func.isRequired

}

	components/Posts.js	

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

Example:	Reddit	API

110

export	default	class	Posts	extends	Component	{

		render()	{

				return	(

						

								{this.props.posts.map((post,	i)	=>	(

										<li	key={i}>{post.title}

))}

						

)

		}

}

Posts.propTypes	=	{

		posts:	PropTypes.array.isRequired

}

Example:	Reddit	API

111

Next	Steps
If	you	landed	in	this	section,	you	might	be	wondering	at	this	point,	"what	should	I	do	now?".	Here	is	where	we	provide
some	essential	tips/suggestions	on	how	to	diverge	from	creating	trivial	TodoMVC	apps	to	a	real	world	application.

Tips	&	Considerations	For	The	Real	World
Whenever	we	decide	to	create	a	new	project,	we	tend	to	bypass	several	aspects	that	in	the	future	may	slow	us	down.
In	a	real	world	project	we	have	to	consider	several	things	before	we	start	coding,	such	as:	how	to	configure	a		store	,
	store		size,	data	structure,	state	model,	middlewares,	environment,	async	transactions,	immutability,	etc..

The	above	are	some	of	the	main	considerations	we	have	to	think	about	beforehand.	It's	not	an	easy	task,	but	there
are	some	strategies	for	making	it	go	smoothly.

UI	vs	State

One	of	the	biggest	challenges	developers	face	when	using	Redux	is	to	describe	UI	state	with	data.	The	majority	of
software	programs	out	there	are	just	data	transformation,	and	having	the	clear	understanding	that	UIs	are	simply	data
beautifully	presented	facilitates	the	process	of	building	them.

Nicolas	Hery	describes	it	really	well	in	"Describing	UI	state	with	data".	Also,	it's	always	good	to	know	When	to	use
Redux,	because	a	lot	of	times	You	Might	Not	Need	Redux

Configure	a	Store

To	configure	a		store		we	have	to	make	major	considerations	on	which	middleware	to	use.	There	are	several	libraries
out	there,	but	the	most	popular	ones	are:

Perform	Asynchronous	dispatch

redux-thunk
Redux	Thunk	middleware	allows	you	to	write	action	creators	that	return	a	function	instead	of	an	action.	The
thunk	can	be	used	to	delay	the	dispatch	of	an	action,	or	to	dispatch	only	if	a	certain	condition	is	met.	It
incorporates	the	methods		dispatch		and		getState		as	parameters.

redux-saga
redux-saga	is	a	library	that	aims	to	make	the	execution	of	application	side	effects	(e.g.,	asynchronous	tasks
like	data	fetching	and	impure	procedures	such	as	accessing	the	browser	cache)	manageable	and	efficient.
It's	simple	to	test,	as	it	uses	the	ES6	feature	called		generators	,	making	the	flow	as	easy	to	read	as
synchronous	code.

redux-observable
redux-observable	is	a	middleware	for	redux	that	is	inspired	by	redux-thunk.	It	allows	developers	to	dispatch	a
function	that	returns	an		Observable	,		Promise		or		iterable		of	action(s).	When	the	observable	emits	an
action,	or	the	promise	resolves	an	action,	or	the	iterable	gives	an	action	out,	that	action	is	then	dispatched	as
usual.

Development	Purposes	/	debug

redux-devtools
Redux	DevTools	is	a	set	of	tools	for	your	Redux	development	workflow.

redux-logger

Next	Steps

112

http://nicolashery.com/describing-ui-state-with-data/
https://medium.com/@fastphrase/when-to-use-redux-f0aa70b5b1e2
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://github.com/gaearon/redux-thunk
https://github.com/redux-saga/redux-saga
https://github.com/redux-observable/redux-observable
https://github.com/reduxjs/redux-devtools
https://github.com/evgenyrodionov/redux-logger

redux-logger	logs	all	actions	that	are	being	dispatched	to	the	store.

To	be	able	to	choose	one	of	these	libraries	we	must	take	into	account	whether	we	are	building	a	small	or	large
application.	Usability,	code	standards,	and	JavaScript	knowledge	may	also	be	considered.	All	of	them	are	similar.

Tip:	Think	of	middlewares	as	skills	you	give	to	your		store	.	i.e:	By	attributing	the		redux-thunk		to	your	store,	you're
giving	the		store		the	ability	to	dispatch	async	actions.

Naming	Convention

A	big	source	of	confusion	when	it	comes	to	a	large	project	is	what	to	name	things.	This	is	often	just	as	important	as
the	code	itself.	Defining	a	naming	convention	for	your	actions	at	the	very	beginning	of	a	project	and	sticking	to	that
convention	helps	you	to	scale	up	as	the	scope	of	the	project	grows.

Great	source:	A	Simple	Naming	Convention	for	Action	Creators	in	Redux	and	Redux	Patterns	and	Anti-Patterns

Tip:	Set	up	an	opinionated	code	formatter,	such	as	Prettier.

Scalability

There	is	no	magic	to	analyze	and	predict	how	much	your	application	is	going	to	grow.	But	it's	okay!	Redux's	simplistic
foundation	means	it	will	adapt	to	many	kinds	of	applications	as	they	grow.	Here	are	some	resources	on	how	to	build
up	your	application	in	a	sensible	manner:

Taming	Large	React	Applications	with	Redux
Real-World	React	and	Redux	-	part	l
Real-World	React	and	Redux	-	part	ll
Redux:	Architecting	and	scaling	a	new	web	app	at	the	NY	Times

Tip:	It's	great	to	plan	things	beforehand,	but	don't	get	caught	up	in	"analysis	paralysis".	Done	is	always	better	than
perfect,	after	all.	And	Redux	makes	refactoring	easy	if	you	need	to.

With	all	that	being	said,	the	best	practice	is	to	keep	coding	and	learning.	Participate	in	issues	and	StackOverFlow
questions.	Helping	others	is	a	great	way	of	mastering	Redux.

Tip:	A	repository	with	an	extensive	amount	of	content	about	best	practices	and	Redux	architecture	is	shared	by
@markerikson	at	react-redux-links.

Next	Steps

113

https://decembersoft.com/posts/a-simple-naming-convention-for-action-creators-in-redux-js/
https://tech.affirm.com/redux-patterns-and-anti-patterns-7d80ef3d53bc
https://github.com/prettier/prettier
http://slides.com/joelkanzelmeyer/taming-large-redux-apps#/
https://dzone.com/articles/real-world-reactjs-and-redux-part-1
https://dzone.com/articles/real-world-reactjs-and-redux-part-2
https://www.youtube.com/watch?v=lI3IcjFg9Wk
https://en.wikipedia.org/wiki/Analysis_paralysis
https://blog.boldlisting.com/so-youve-screwed-up-your-redux-store-or-why-redux-makes-refactoring-easy-400e19606c71
https://github.com/reduxjs/redux/issues
https://stackoverflow.com/questions/tagged/redux
https://github.com/markerikson/react-redux-links

Recipes
These	are	some	use	cases	and	code	snippets	to	get	you	started	with	Redux	in	a	real	app.	They	assume	you
understand	the	topics	in	basic	and	advanced	tutorials.

Configuring	Your	Store
Migrating	to	Redux
Using	Object	Spread	Operator
Reducing	Boilerplate
Code	Splitting
Server	Rendering
Writing	Tests
Computing	Derived	Data
Implementing	Undo	History
Isolating	Subapps
Structuring	Reducers
Using	Immutable.JS	with	Redux

Recipes

114

Configuring	Your	Store
In	the	basics	section,	we	introduced	the	fundamental	Redux	concepts	by	building	an	example	Todo	list	app.

We	will	now	explore	how	to	customise	the	store	to	add	extra	functionality.	We'll	start	with	the	source	code	from	the
basics	section,	which	you	can	view	in	the	documentation,	in	our	repository	of	examples,	or	in	your	browser	via
CodeSandbox.

Creating	the	store
First,	let's	look	at	the	original		index.js		file	in	which	we	created	our	store:

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	{	createStore	}	from	'redux'

import	rootReducer	from	'./reducers'

import	App	from	'./components/App'

const	store	=	createStore(rootReducer)

render(

		<Provider	store={store}>

				<App	/>

		</Provider>,

		document.getElementById('root')

)

In	this	code,	we	pass	our	reducers	to	the	Redux		createStore		function,	which	returns	a		store		object.	We	then	pass
this	object	to	the		react-redux			Provider		component,	which	is	rendered	at	the	top	of	our	component	tree.

This	ensures	that	any	time	we	connect	to	Redux	in	our	app	via		react-redux			connect	,	the	store	is	available	to	our
components.

Extending	Redux	functionality
Most	apps	extend	the	functionality	of	their	Redux	store	by	adding	middleware	or	store	enhancers	(note:	middleware	is
common,	enhancers	are	less	common).	Middleware	adds	extra	functionality	to	the	Redux		dispatch		function;
enhancers	add	extra	functionality	to	the	Redux	store.

We	will	add	two	middlewares	and	one	enhancer:

The		redux-thunk		middleware,	which	allows	simple	asynchronous	use	of	dispatch.
A	middleware	which	logs	dispatched	actions	and	the	resulting	new	state.
An	enhancer	which	logs	the	time	taken	for	the	reducers	to	process	each	action.

Install		redux-thunk	

npm	install	--save	redux-thunk

middleware/logger.js

const	logger	=	store	=>	next	=>	action	=>	{

Configuring	Your	Store

115

https://github.com/reduxjs/redux/tree/master/examples/todos/src
https://codesandbox.io/s/github/reduxjs/redux/tree/master/examples/todos
https://github.com/reduxjs/redux-thunk

		console.group(action.type)

		console.info('dispatching',	action)

		let	result	=	next(action)

		console.log('next	state',	store.getState())

		console.groupEnd()

		return	result

}

export	default	logger

enhancers/monitorReducer.js

const	round	=	number	=>	Math.round(number	*	100)	/	100

const	monitorReducerEnhancer	=	createStore	=>	(

		reducer,

		initialState,

		enhancer

)	=>	{

		const	monitoredReducer	=	(state,	action)	=>	{

				const	start	=	performance.now()

				const	newState	=	reducer(state,	action)

				const	end	=	performance.now()

				const	diff	=	round(end	-	start)

				console.log('reducer	process	time:',	diff)

				return	newState

		}

		return	createStore(monitoredReducer,	initialState,	enhancer)

}

export	default	monitorReducerEnhancer

Let's	add	these	to	our	existing		index.js	.

First,	we	need	to	import		redux-thunk		plus	our		loggerMiddleware		and		monitorReducerEnhancer	,	plus	two	extra
functions	provided	by	Redux:		applyMiddleware		and		compose	.
We	then	use		applyMiddleware		to	create	a	store	enhancer	which	will	apply	our		loggerMiddleware		and	the
	thunkMiddleware		to	the	store's	dispatch	function.
Next,	we	use		compose		to	compose	our	new		middlewareEnhancer		and	our		monitorReducerEnhancer		into	one
function.

This	is	needed	because	you	can	only	pass	one	enhancer	into		createStore	.	To	use	multiple	enhancers,	you	must
first	compose	them	into	a	single	larger	enhancer,	as	shown	in	this	example.

Finally,	we	pass	this	new		composedEnhancers		function	into		createStore		as	its	third	argument.	Note:	the	second
argument,	which	we	will	ignore,	lets	you	preloaded	state	into	the	store.

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	{	applyMiddleware,	createStore,	compose	}	from	'redux'

import	thunkMiddleware	from	'redux-thunk'

import	rootReducer	from	'./reducers'

import	loggerMiddleware	from	'./middleware/logger'

import	monitorReducerEnhancer	from	'./enhancers/monitorReducer'

import	App	from	'./components/App'

const	middlewareEnhancer	=	applyMiddleware(loggerMiddleware,	thunkMiddleware)

const	composedEnhancers	=	compose(

		middlewareEnhancer,

		monitorReducerEnhancer

)

Configuring	Your	Store

116

const	store	=	createStore(rootReducer,	undefined,	composedEnhancers)

render(

		<Provider	store={store}>

				<App	/>

		</Provider>,

		document.getElementById('root')

)

Problems	with	this	approach
While	this	code	works,	for	a	typical	app	it	is	not	ideal.

Most	apps	use	more	than	one	middleware,	and	each	middleware	often	requires	some	initial	setup.	The	extra	noise
added	to	the		index.js		can	quickly	make	it	hard	to	maintain,	because	the	logic	is	not	cleanly	organised.

The	solution:		configureStore	
The	solution	to	this	problem	is	to	create	a	new		configureStore		function	which	encapsulates	our	store	creation	logic,
which	can	then	be	located	in	its	own	file	to	ease	extensibility.

The	end	goal	is	for	our		index.js		to	look	like	this:

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	App	from	'./components/App'

import	configureStore	from	'./configureStore'

const	store	=	configureStore()

render(

		<Provider	store={store}>

				<App	/>

		</Provider>,

		document.getElementById('root')

)

All	the	logic	related	to	configuring	the	store	-	including	importing	reducers,	middleware,	and	enhancers	-	is	handled	in
a	dedicated	file.

To	achieve	this,		configureStore		function	looks	like	this:

import	{	applyMiddleware,	compose,	createStore	}	from	'redux'

import	thunkMiddleware	from	'redux-thunk'

import	monitorReducersEnhancer	from	'./enhancers/monitorReducers'

import	loggerMiddleware	from	'./middleware/logger'

import	rootReducer	from	'./reducers'

export	default	function	configureStore(preloadedState)	{

		const	middlewares	=	[loggerMiddleware,	thunkMiddleware]

		const	middlewareEnhancer	=	applyMiddleware(...middlewares)

		const	enhancers	=	[middlewareEnhancer,	monitorReducersEnhancer]

		const	composedEnhancers	=	compose(...enhancers)

		const	store	=	createStore(rootReducer,	preloadedState,	composedEnhancers)

		return	store

}

Configuring	Your	Store

117

This	function	follows	the	same	steps	outlined	above,	with	some	of	the	logic	split	out	to	prepare	for	extension,	which
will	make	it	easier	to	add	more	in	future:

Both		middlewares		and		enhancers		are	defined	as	arrays,	separate	from	the	functions	which	consume	them.

This	allows	us	to	easily	add	more	middleware	or	enhancers	based	on	different	conditions.

For	example,	it	is	common	to	add	some	middleware	only	when	in	development	mode,	which	is	easily	achieved	by
pushing	to	the	middlewares	array	inside	an	if	statement:

if	(process.env	===	'development')	{

		middlewares.push(secretMiddleware)

}

A		preloadedState		variable	is	passed	through	to		createStore		in	case	we	want	to	add	this	later.

This	also	makes	our		createStore		function	easier	to	reason	about	-	each	step	is	clearly	separated,	which	makes	it
more	obvious	what	exactly	is	happening.

Integrating	the	devtools	extension
Another	common	feature	which	you	may	wish	to	add	to	your	app	is	the		redux-devtools-extension		integration.

The	extension	is	a	suite	of	tools	which	give	you	absolute	control	over	your	Redux	store	-	it	allows	you	to	inspect	and
replay	actions,	explore	your	state	at	different	times,	dispatch	actions	directly	to	the	store,	and	much	more.	Click	here
to	read	more	about	the	available	features.

There	are	several	ways	to	integrate	the	extension,	but	we	will	use	the	most	convenient	option.

First,	we	install	the	package	via	npm:

npm	install	--save-dev	redux-devtools-extension

Next,	we	remove	the		compose		function	which	we	imported	from		redux	,	and	replace	it	with	a	new
	composeWithDevTools		function	imported	from		redux-devtools-extension	.

The	final	code	looks	like	this:

import	{	applyMiddleware,	createStore	}	from	'redux'

import	thunkMiddleware	from	'redux-thunk'

import	{	composeWithDevTools	}	from	'redux-devtools-extension'

import	monitorReducersEnhancer	from	'./enhancers/monitorReducers'

import	loggerMiddleware	from	'./middleware/logger'

import	rootReducer	from	'./reducers'

export	default	function	configureStore(preloadedState)	{

		const	middlewares	=	[loggerMiddleware,	thunkMiddleware]

		const	middlewareEnhancer	=	applyMiddleware(...middlewares)

		const	enhancers	=	[middlewareEnhancer,	monitorReducersEnhancer]

		const	composedEnhancers	=	composeWithDevTools(...enhancers)

		const	store	=	createStore(rootReducer,	preloadedState,	composedEnhancers)

		return	store

}

And	that's	it!

Configuring	Your	Store

118

https://github.com/zalmoxisus/redux-devtools-extension

If	we	now	visit	our	app	via	a	browser	with	the	devtools	extension	installed,	we	can	explore	and	debug	using	a	powerful
new	tool.

Hot	reloading
Another	powerful	tool	which	can	make	the	development	process	a	lot	more	intuitive	is	hot	reloading,	which	means
replacing	pieces	of	code	without	restarting	your	whole	app.

For	example,	consider	what	happens	when	you	run	your	app,	interact	with	it	for	a	while,	and	then	decide	to	make
changes	to	one	of	your	reducers.	Normally,	when	you	make	those	changes	your	app	will	restart,	reverting	your	Redux
state	to	its	initial	value.

With	hot	module	reloading	enabled,	only	the	reducer	you	changed	would	be	reloaded,	allowing	you	to	change	your
code	without	resetting	the	state	every	time.	This	makes	for	a	much	faster	development	process.

We'll	add	hot	reloading	both	to	our	Redux	reducers	and	to	our	React	components.

First,	let's	add	it	to	our		configureStore		function:

import	{	applyMiddleware,	compose,	createStore	}	from	'redux'

import	thunkMiddleware	from	'redux-thunk'

import	monitorReducersEnhancer	from	'./enhancers/monitorReducers'

import	loggerMiddleware	from	'./middleware/logger'

import	rootReducer	from	'./reducers'

export	default	function	configureStore(preloadedState)	{

		const	middlewares	=	[loggerMiddleware,	thunkMiddleware]

		const	middlewareEnhancer	=	applyMiddleware(...middlewares)

		const	enhancers	=	[middlewareEnhancer,	monitorReducersEnhancer]

		const	composedEnhancers	=	compose(...enhancers)

		const	store	=	createStore(rootReducer,	preloadedState,	composedEnhancers)

		if	(process.env.NODE_ENV	!==	'production'	&&	module.hot)	{

				module.hot.accept('./reducers',	()	=>	store.replaceReducer(rootReducer))

		}

		return	store

}

The	new	code	is	wrapped	in	an		if		statement,	so	it	only	runs	when	our	app	is	not	in	production	mode,	and	only	if	the
	module.hot		feature	is	available.

Bundlers	like	Webpack	and	Parcel	support	a		module.hot.accept		method	to	specify	which	module	should	be	hot
reloaded,	and	what	should	happen	when	the	module	changes.	In	this	case,	we're	watching	the		./reducers		module,
and	passing	the	updated		rootReducer		to	the		store.replaceReducer		method	when	it	changes.

We'll	also	use	the	same	pattern	in	our		index.js		to	hot	reload	any	changes	to	our	React	components:

import	React	from	'react'

import	{	render	}	from	'react-dom'

import	{	Provider	}	from	'react-redux'

import	App	from	'./components/App'

import	configureStore	from	'./configureStore'

const	store	=	configureStore()

const	renderApp	=	()	=>

		render(

				<Provider	store={store}>

						<App	/>

				</Provider>,

Configuring	Your	Store

119

				document.getElementById('root')

)

if	(process.env.NODE_ENV	!==	'production'	&&	module.hot)	{

		module.hot.accept('./components/App',	renderApp)

}

renderApp()

The	only	extra	change	here	is	that	we	have	encapsulated	our	app's	rendering	into	a	new		renderApp		function,	which
we	now	call	to	re-render	the	app.

Next	Steps
Now	that	you	know	how	to	encapsulate	your	store	configuration	to	make	it	easier	to	maintain,	you	can	learn	more
about	the	advanced	features	Redux	provides,	or	take	a	closer	look	at	some	of	the	extensions	available	in	the	Redux
ecosystem.

Configuring	Your	Store

120

Migrating	to	Redux
Redux	is	not	a	monolithic	framework,	but	a	set	of	contracts	and	a	few	functions	that	make	them	work	together.	The
majority	of	your	“Redux	code”	will	not	even	use	Redux	APIs,	as	most	of	the	time	you'll	be	writing	functions.

This	makes	it	easy	to	migrate	both	to	and	from	Redux.
We	don't	want	to	lock	you	in!

From	Flux
Reducers	capture	“the	essence”	of	Flux	Stores,	so	it's	possible	to	gradually	migrate	an	existing	Flux	project	towards
Redux,	whether	you	are	using	Flummox,	Alt,	traditional	Flux,	or	any	other	Flux	library.

Your	process	will	look	like	this:

Create	a	function	called		createFluxStore(reducer)		that	creates	a	Flux	store	compatible	with	your	existing	app
from	a	reducer	function.	Internally	it	might	look	similar	to		createStore		(source)	implementation	from	Redux.	Its
dispatch	handler	should	just	call	the		reducer		for	any	action,	store	the	next	state,	and	emit	change.

This	allows	you	to	gradually	rewrite	every	Flux	Store	in	your	app	as	a	reducer,	but	still	export
	createFluxStore(reducer)		so	the	rest	of	your	app	is	not	aware	that	this	is	happening	and	sees	the	Flux	stores.

As	you	rewrite	your	Stores,	you	will	find	that	you	need	to	avoid	certain	Flux	anti-patterns	such	as	fetching	API
inside	the	Store,	or	triggering	actions	inside	the	Stores.	Your	Flux	code	will	be	easier	to	follow	once	you	port	it	to
be	based	on	reducers!

When	you	have	ported	all	of	your	Flux	Stores	to	be	implemented	on	top	of	reducers,	you	can	replace	the	Flux
library	with	a	single	Redux	store,	and	combine	those	reducers	you	already	have	into	one	using
	combineReducers(reducers)	.

Now	all	that's	left	to	do	is	to	port	the	UI	to	use	react-redux	or	equivalent.

Finally,	you	might	want	to	begin	using	some	Redux	idioms	like	middleware	to	further	simplify	your	asynchronous
code.

From	Backbone
Backbone's	model	layer	is	quite	different	from	Redux,	so	we	don't	suggest	mixing	them.	If	possible,	it	is	best	that	you
rewrite	your	app's	model	layer	from	scratch	instead	of	connecting	Backbone	to	Redux.	However,	if	a	rewrite	is	not
feasible,	you	may	use	backbone-redux	to	migrate	gradually,	and	keep	the	Redux	store	in	sync	with	Backbone	models
and	collections.

If	your	Backbone	codebase	is	too	big	for	a	quick	rewrite	or	you	don't	want	to	manage	interactions	between	store	and
models,	use	backbone-redux-migrator	to	help	your	two	codebases	coexist	while	keeping	healthy	separation.	Once
your	rewrite	finishes,	Backbone	code	can	be	discarded	and	your	Redux	application	can	work	on	its	own	once	you
configure	router.

Migrating	to	Redux

121

http://github.com/acdlite/flummox
http://github.com/goatslacker/alt
https://github.com/facebook/flux
https://github.com/reduxjs/redux/blob/master/src/createStore.js
https://github.com/redbooth/backbone-redux
https://github.com/naugtur/backbone-redux-migrator

Using	Object	Spread	Operator
Since	one	of	the	core	tenets	of	Redux	is	to	never	mutate	state,	you'll	often	find	yourself	using		Object.assign()		to
create	copies	of	objects	with	new	or	updated	values.	For	example,	in	the		todoApp		below		Object.assign()		is	used	to
return	a	new		state		object	with	an	updated		visibilityFilter		property:

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				default:

						return	state

		}

}

While	effective,	using		Object.assign()		can	quickly	make	simple	reducers	difficult	to	read	given	its	rather	verbose
syntax.

An	alternative	approach	is	to	use	the	object	spread	syntax	recently	added	to	the	JavaScript	specification.	It	lets	you
use	the	spread	(...)	operator	to	copy	enumerable	properties	from	one	object	to	another	in	a	more	succinct	way.	The
object	spread	operator	is	conceptually	similar	to	the	ES6	array	spread	operator.	We	can	simplify	the		todoApp	
example	above	by	using	the	object	spread	syntax:

function	todoApp(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	SET_VISIBILITY_FILTER:

						return	{	...state,	visibilityFilter:	action.filter	}

				default:

						return	state

		}

}

The	advantage	of	using	the	object	spread	syntax	becomes	more	apparent	when	you're	composing	complex	objects.
Below		getAddedIds		maps	an	array	of		id		values	to	an	array	of	objects	with	values	returned	from		getProduct		and
	getQuantity	.

return	getAddedIds(state.cart).map(id	=>

		Object.assign({},	getProduct(state.products,	id),	{

				quantity:	getQuantity(state.cart,	id)

		})

)

Object	spread	lets	us	simplify	the	above		map		call	to:

return	getAddedIds(state.cart).map(id	=>	({

		...getProduct(state.products,	id),

		quantity:	getQuantity(state.cart,	id)

}))

While	the	object	spread	syntax	is	a	Stage	4	proposal	for	ECMAScript	and	accepted	for	the	2018	specification	release,
you	will	still	need	to	use	a	transpiler	such	as	Babel	to	use	it	in	production	systems.	You	should	use	the		env		preset,
install		babel-plugin-transform-object-rest-spread		and	add	it	individually	to	the		plugins		array	in	your		.babelrc	.

{

		"presets":	["@babel/preset-env"],

Using	Object	Spread	Operator

122

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign
https://github.com/tc39/proposal-object-rest-spread
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_operator
https://github.com/tc39/proposal-object-rest-spread#status-of-this-proposal
http://babeljs.io/
https://github.com/babel/babel/tree/master/packages/babel-preset-env
http://babeljs.io/docs/plugins/transform-object-rest-spread/

		"plugins":	["transform-object-rest-spread"]

}

Using	Object	Spread	Operator

123

Reducing	Boilerplate
Redux	is	in	part	inspired	by	Flux,	and	the	most	common	complaint	about	Flux	is	how	it	makes	you	write	a	lot	of
boilerplate.	In	this	recipe,	we	will	consider	how	Redux	lets	us	choose	how	verbose	we'd	like	our	code	to	be,	depending
on	personal	style,	team	preferences,	longer	term	maintainability,	and	so	on.

Actions
Actions	are	plain	objects	describing	what	happened	in	the	app,	and	serve	as	the	sole	way	to	describe	an	intention	to
mutate	the	data.	It's	important	that	actions	being	objects	you	have	to	dispatch	is	not	boilerplate,	but	one	of	the
fundamental	design	choices	of	Redux.

There	are	frameworks	claiming	to	be	similar	to	Flux,	but	without	a	concept	of	action	objects.	In	terms	of	being
predictable,	this	is	a	step	backwards	from	Flux	or	Redux.	If	there	are	no	serializable	plain	object	actions,	it	is
impossible	to	record	and	replay	user	sessions,	or	to	implement	hot	reloading	with	time	travel.	If	you'd	rather	modify
data	directly,	you	don't	need	Redux.

Actions	look	like	this:

{	type:	'ADD_TODO',	text:	'Use	Redux'	}

{	type:	'REMOVE_TODO',	id:	42	}

{	type:	'LOAD_ARTICLE',	response:	{	...	}	}

It	is	a	common	convention	that	actions	have	a	constant	type	that	helps	reducers	(or	Stores	in	Flux)	identify	them.	We
recommend	that	you	use	strings	and	not	Symbols	for	action	types,	because	strings	are	serializable,	and	by	using
Symbols	you	make	recording	and	replaying	harder	than	it	needs	to	be.

In	Flux,	it	is	traditionally	thought	that	you	would	define	every	action	type	as	a	string	constant:

const	ADD_TODO	=	'ADD_TODO'

const	REMOVE_TODO	=	'REMOVE_TODO'

const	LOAD_ARTICLE	=	'LOAD_ARTICLE'

Why	is	this	beneficial?	It	is	often	claimed	that	constants	are	unnecessary,	and	for	small	projects,	this	might	be
correct.	For	larger	projects,	there	are	some	benefits	to	defining	action	types	as	constants:

It	helps	keep	the	naming	consistent	because	all	action	types	are	gathered	in	a	single	place.
Sometimes	you	want	to	see	all	existing	actions	before	working	on	a	new	feature.	It	may	be	that	the	action	you
need	was	already	added	by	somebody	on	the	team,	but	you	didn't	know.
The	list	of	action	types	that	were	added,	removed,	and	changed	in	a	Pull	Request	helps	everyone	on	the	team
keep	track	of	scope	and	implementation	of	new	features.
If	you	make	a	typo	when	importing	an	action	constant,	you	will	get		undefined	.	Redux	will	immediately	throw
when	dispatching	such	an	action,	and	you'll	find	the	mistake	sooner.

It	is	up	to	you	to	choose	the	conventions	for	your	project.	You	may	start	by	using	inline	strings,	and	later	transition	to
constants,	and	maybe	later	group	them	into	a	single	file.	Redux	does	not	have	any	opinion	here,	so	use	your	best
judgment.

Action	Creators

Reducing	Boilerplate

124

https://www.youtube.com/watch?v=xsSnOQynTHs
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol

It	is	another	common	convention	that,	instead	of	creating	action	objects	inline	in	the	places	where	you	dispatch	the
actions,	you	would	create	functions	generating	them.

For	example,	instead	of	calling		dispatch		with	an	object	literal:

//	somewhere	in	an	event	handler

dispatch({

		type:	'ADD_TODO',

		text:	'Use	Redux'

})

You	might	write	an	action	creator	in	a	separate	file,	and	import	it	into	your	component:

	actionCreators.js	

export	function	addTodo(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

	AddTodo.js	

import	{	addTodo	}	from	'./actionCreators'

//	somewhere	in	an	event	handler

dispatch(addTodo('Use	Redux'))

Action	creators	have	often	been	criticized	as	boilerplate.	Well,	you	don't	have	to	write	them!	You	can	use	object
literals	if	you	feel	this	better	suits	your	project.	There	are,	however,	some	benefits	for	writing	action	creators	you
should	know	about.

Let's	say	a	designer	comes	back	to	us	after	reviewing	our	prototype,	and	tells	us	that	we	need	to	allow	three	todos
maximum.	We	can	enforce	this	by	rewriting	our	action	creator	to	a	callback	form	with	redux-thunk	middleware	and
adding	an	early	exit:

function	addTodoWithoutCheck(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

export	function	addTodo(text)	{

		//	This	form	is	allowed	by	Redux	Thunk	middleware

		//	described	below	in	“Async	Action	Creators”	section.

		return	function(dispatch,	getState)	{

				if	(getState().todos.length	===	3)	{

						//	Exit	early

						return

				}

				dispatch(addTodoWithoutCheck(text))

		}

}

We	just	modified	how	the		addTodo		action	creator	behaves,	completely	invisible	to	the	calling	code.	We	don't	have	to
worry	about	looking	at	each	place	where	todos	are	being	added,	to	make	sure	they	have	this	check.	Action
creators	let	you	decouple	additional	logic	around	dispatching	an	action,	from	the	actual	components	emitting	those
actions.	It's	very	handy	when	the	application	is	under	heavy	development,	and	the	requirements	change	often.

Reducing	Boilerplate

125

https://github.com/gaearon/redux-thunk

Generating	Action	Creators

Some	frameworks	like	Flummox	generate	action	type	constants	automatically	from	the	action	creator	function
definitions.	The	idea	is	that	you	don't	need	to	both	define		ADD_TODO		constant	and		addTodo()		action	creator.	Under
the	hood,	such	solutions	still	generate	action	type	constants,	but	they're	created	implicitly	so	it's	a	level	of	indirection
and	can	cause	confusion.	We	recommend	creating	your	action	type	constants	explicitly.

Writing	simple	action	creators	can	be	tiresome	and	often	ends	up	generating	redundant	boilerplate	code:

export	function	addTodo(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

export	function	editTodo(id,	text)	{

		return	{

				type:	'EDIT_TODO',

				id,

				text

		}

}

export	function	removeTodo(id)	{

		return	{

				type:	'REMOVE_TODO',

				id

		}

}

You	can	always	write	a	function	that	generates	an	action	creator:

function	makeActionCreator(type,	...argNames)	{

		return	function(...args)	{

				const	action	=	{	type	}

				argNames.forEach((arg,	index)	=>	{

						action[argNames[index]]	=	args[index]

				})

				return	action

		}

}

const	ADD_TODO	=	'ADD_TODO'

const	EDIT_TODO	=	'EDIT_TODO'

const	REMOVE_TODO	=	'REMOVE_TODO'

export	const	addTodo	=	makeActionCreator(ADD_TODO,	'text')

export	const	editTodo	=	makeActionCreator(EDIT_TODO,	'id',	'text')

export	const	removeTodo	=	makeActionCreator(REMOVE_TODO,	'id')

There	are	also	utility	libraries	to	aid	in	generating	action	creators,	such	as	redux-act	and	redux-actions.	These	can
help	reduce	boilerplate	code	and	enforce	adherence	to	standards	such	as	Flux	Standard	Action	(FSA).

Async	Action	Creators
Middleware	lets	you	inject	custom	logic	that	interprets	every	action	object	before	it	is	dispatched.	Async	actions	are
the	most	common	use	case	for	middleware.

Without	any	middleware,		dispatch		only	accepts	a	plain	object,	so	we	have	to	perform	AJAX	calls	inside	our
components:

Reducing	Boilerplate

126

https://github.com/acdlite/flummox
https://github.com/pauldijou/redux-act
https://github.com/acdlite/redux-actions
https://github.com/acdlite/flux-standard-action

	actionCreators.js	

export	function	loadPostsSuccess(userId,	response)	{

		return	{

				type:	'LOAD_POSTS_SUCCESS',

				userId,

				response

		}

}

export	function	loadPostsFailure(userId,	error)	{

		return	{

				type:	'LOAD_POSTS_FAILURE',

				userId,

				error

		}

}

export	function	loadPostsRequest(userId)	{

		return	{

				type:	'LOAD_POSTS_REQUEST',

				userId

		}

}

	UserInfo.js	

import	{	Component	}	from	'react'

import	{	connect	}	from	'react-redux'

import	{

		loadPostsRequest,

		loadPostsSuccess,

		loadPostsFailure

}	from	'./actionCreators'

class	Posts	extends	Component	{

		loadData(userId)	{

				//	Injected	into	props	by	React	Redux	`connect()`	call:

				const	{	dispatch,	posts	}	=	this.props

				if	(posts[userId])	{

						//	There	is	cached	data!	Don't	do	anything.

						return

				}

				//	Reducer	can	react	to	this	action	by	setting

				//	`isFetching`	and	thus	letting	us	show	a	spinner.

				dispatch(loadPostsRequest(userId))

				//	Reducer	can	react	to	these	actions	by	filling	the	`users`.

				fetch(`http://myapi.com/users/${userId}/posts`).then(

						response	=>	dispatch(loadPostsSuccess(userId,	response)),

						error	=>	dispatch(loadPostsFailure(userId,	error))

)

		}

		componentDidMount()	{

				this.loadData(this.props.userId)

		}

		componentDidUpdate(prevProps)	{

				if	(prevProps.userId	!==	this.props.userId)	{

						this.loadData(this.props.userId)

				}

		}

		render()	{

				if	(this.props.isFetching)	{

						return	<p>Loading...</p>

				}

Reducing	Boilerplate

127

				const	posts	=	this.props.posts.map(post	=>	(

						<Post	post={post}	key={post.id}	/>

))

				return	<div>{posts}</div>

		}

}

export	default	connect(state	=>	({

		posts:	state.posts,

		isFetching:	state.isFetching

}))(Posts)

However,	this	quickly	gets	repetitive	because	different	components	request	data	from	the	same	API	endpoints.
Moreover,	we	want	to	reuse	some	of	this	logic	(e.g.,	early	exit	when	there	is	cached	data	available)	from	many
components.

Middleware	lets	us	write	more	expressive,	potentially	async	action	creators.	It	lets	us	dispatch	something	other
than	plain	objects,	and	interprets	the	values.	For	example,	middleware	can	“catch”	dispatched	Promises	and	turn
them	into	a	pair	of	request	and	success/failure	actions.

The	simplest	example	of	middleware	is	redux-thunk.	“Thunk”	middleware	lets	you	write	action	creators	as
“thunks”,	that	is,	functions	returning	functions.	This	inverts	the	control:	you	will	get		dispatch		as	an	argument,	so
you	can	write	an	action	creator	that	dispatches	many	times.

Note

Thunk	middleware	is	just	one	example	of	middleware.	Middleware	is	not	about	“letting	you	dispatch	functions”.
It's	about	letting	you	dispatch	anything	that	the	particular	middleware	you	use	knows	how	to	handle.	Thunk
middleware	adds	a	specific	behavior	when	you	dispatch	functions,	but	it	really	depends	on	the	middleware	you
use.

Consider	the	code	above	rewritten	with	redux-thunk:

	actionCreators.js	

export	function	loadPosts(userId)	{

		//	Interpreted	by	the	thunk	middleware:

		return	function(dispatch,	getState)	{

				const	{	posts	}	=	getState()

				if	(posts[userId])	{

						//	There	is	cached	data!	Don't	do	anything.

						return

				}

				dispatch({

						type:	'LOAD_POSTS_REQUEST',

						userId

				})

				//	Dispatch	vanilla	actions	asynchronously

				fetch(`http://myapi.com/users/${userId}/posts`).then(

						response	=>

								dispatch({

										type:	'LOAD_POSTS_SUCCESS',

										userId,

										response

								}),

						error	=>

								dispatch({

										type:	'LOAD_POSTS_FAILURE',

										userId,

										error

								})

)

		}

Reducing	Boilerplate

128

https://github.com/gaearon/redux-thunk
https://github.com/gaearon/redux-thunk

}

	UserInfo.js	

import	{	Component	}	from	'react'

import	{	connect	}	from	'react-redux'

import	{	loadPosts	}	from	'./actionCreators'

class	Posts	extends	Component	{

		componentDidMount()	{

				this.props.dispatch(loadPosts(this.props.userId))

		}

		componentDidUpdate(prevProps)	{

				if	(prevProps.userId	!==	this.props.userId)	{

						this.props.dispatch(loadPosts(this.props.userId))

				}

		}

		render()	{

				if	(this.props.isFetching)	{

						return	<p>Loading...</p>

				}

				const	posts	=	this.props.posts.map(post	=>	(

						<Post	post={post}	key={post.id}	/>

))

				return	<div>{posts}</div>

		}

}

export	default	connect(state	=>	({

		posts:	state.posts,

		isFetching:	state.isFetching

}))(Posts)

This	is	much	less	typing!	If	you'd	like,	you	can	still	have	“vanilla”	action	creators	like		loadPostsSuccess		which	you'd
use	from	a	container		loadPosts		action	creator.

Finally,	you	can	write	your	own	middleware.	Let's	say	you	want	to	generalize	the	pattern	above	and	describe	your
async	action	creators	like	this	instead:

export	function	loadPosts(userId)	{

		return	{

				//	Types	of	actions	to	emit	before	and	after

				types:	['LOAD_POSTS_REQUEST',	'LOAD_POSTS_SUCCESS',	'LOAD_POSTS_FAILURE'],

				//	Check	the	cache	(optional):

				shouldCallAPI:	state	=>	!state.posts[userId],

				//	Perform	the	fetching:

				callAPI:	()	=>	fetch(`http://myapi.com/users/${userId}/posts`),

				//	Arguments	to	inject	in	begin/end	actions

				payload:	{	userId	}

		}

}

The	middleware	that	interprets	such	actions	could	look	like	this:

function	callAPIMiddleware({	dispatch,	getState	})	{

		return	next	=>	action	=>	{

				const	{	types,	callAPI,	shouldCallAPI	=	()	=>	true,	payload	=	{}	}	=	action

				if	(!types)	{

						//	Normal	action:	pass	it	on

						return	next(action)

				}

Reducing	Boilerplate

129

				if	(

						!Array.isArray(types)	||

						types.length	!==	3	||

						!types.every(type	=>	typeof	type	===	'string')

)	{

						throw	new	Error('Expected	an	array	of	three	string	types.')

				}

				if	(typeof	callAPI	!==	'function')	{

						throw	new	Error('Expected	callAPI	to	be	a	function.')

				}

				if	(!shouldCallAPI(getState()))	{

						return

				}

				const	[requestType,	successType,	failureType]	=	types

				dispatch(

						Object.assign({},	payload,	{

								type:	requestType

						})

)

				return	callAPI().then(

						response	=>

								dispatch(

										Object.assign({},	payload,	{

												response,

												type:	successType

										})

),

						error	=>

								dispatch(

										Object.assign({},	payload,	{

												error,

												type:	failureType

										})

)

)

		}

}

After	passing	it	once	to		applyMiddleware(...middlewares)	,	you	can	write	all	your	API-calling	action	creators	the	same
way:

export	function	loadPosts(userId)	{

		return	{

				types:	['LOAD_POSTS_REQUEST',	'LOAD_POSTS_SUCCESS',	'LOAD_POSTS_FAILURE'],

				shouldCallAPI:	state	=>	!state.posts[userId],

				callAPI:	()	=>	fetch(`http://myapi.com/users/${userId}/posts`),

				payload:	{	userId	}

		}

}

export	function	loadComments(postId)	{

		return	{

				types:	[

						'LOAD_COMMENTS_REQUEST',

						'LOAD_COMMENTS_SUCCESS',

						'LOAD_COMMENTS_FAILURE'

],

				shouldCallAPI:	state	=>	!state.comments[postId],

				callAPI:	()	=>	fetch(`http://myapi.com/posts/${postId}/comments`),

				payload:	{	postId	}

		}

}

export	function	addComment(postId,	message)	{

		return	{

				types:	[

						'ADD_COMMENT_REQUEST',

Reducing	Boilerplate

130

						'ADD_COMMENT_SUCCESS',

						'ADD_COMMENT_FAILURE'

],

				callAPI:	()	=>

						fetch(`http://myapi.com/posts/${postId}/comments`,	{

								method:	'post',

								headers:	{

										Accept:	'application/json',

										'Content-Type':	'application/json'

								},

								body:	JSON.stringify({	message	})

						}),

				payload:	{	postId,	message	}

		}

}

Reducers
Redux	reduces	the	boilerplate	of	Flux	stores	considerably	by	describing	the	update	logic	as	a	function.	A	function	is
simpler	than	an	object,	and	much	simpler	than	a	class.

Consider	this	Flux	store:

const	_todos	=	[]

const	TodoStore	=	Object.assign({},	EventEmitter.prototype,	{

		getAll()	{

				return	_todos

		}

})

AppDispatcher.register(function(action)	{

		switch	(action.type)	{

				case	ActionTypes.ADD_TODO:

						const	text	=	action.text.trim()

						_todos.push(text)

						TodoStore.emitChange()

		}

})

export	default	TodoStore

With	Redux,	the	same	update	logic	can	be	described	as	a	reducing	function:

export	function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	ActionTypes.ADD_TODO:

						const	text	=	action.text.trim()

						return	[...state,	text]

				default:

						return	state

		}

}

The		switch		statement	is	not	the	real	boilerplate.	The	real	boilerplate	of	Flux	is	conceptual:	the	need	to	emit	an
update,	the	need	to	register	the	Store	with	a	Dispatcher,	the	need	for	the	Store	to	be	an	object	(and	the	complications
that	arise	when	you	want	a	universal	app).

It's	unfortunate	that	many	still	choose	Flux	framework	based	on	whether	it	uses		switch		statements	in	the
documentation.	If	you	don't	like		switch	,	you	can	solve	this	with	a	single	function,	as	we	show	below.

Generating	Reducers

Reducing	Boilerplate

131

Let's	write	a	function	that	lets	us	express	reducers	as	an	object	mapping	from	action	types	to	handlers.	For	example,	if
we	want	our		todos		reducers	to	be	defined	like	this:

export	const	todos	=	createReducer([],	{

		[ActionTypes.ADD_TODO]:	(state,	action)	=>	{

				const	text	=	action.text.trim()

				return	[...state,	text]

		}

})

We	can	write	the	following	helper	to	accomplish	this:

function	createReducer(initialState,	handlers)	{

		return	function	reducer(state	=	initialState,	action)	{

				if	(handlers.hasOwnProperty(action.type))	{

						return	handlers[action.type](state,	action)

				}	else	{

						return	state

				}

		}

}

This	wasn't	difficult,	was	it?	Redux	doesn't	provide	such	a	helper	function	by	default	because	there	are	many	ways	to
write	it.	Maybe	you	want	it	to	automatically	convert	plain	JS	objects	to	Immutable	objects	to	hydrate	the	server	state.
Maybe	you	want	to	merge	the	returned	state	with	the	current	state.	There	may	be	different	approaches	to	a	“catch	all”
handler.	All	of	this	depends	on	the	conventions	you	choose	for	your	team	on	a	specific	project.

The	Redux	reducer	API	is		(state,	action)	=>	newState	,	but	how	you	create	those	reducers	is	up	to	you.

Reducing	Boilerplate

132

Server	Rendering
The	most	common	use	case	for	server-side	rendering	is	to	handle	the	initial	render	when	a	user	(or	search	engine
crawler)	first	requests	our	app.	When	the	server	receives	the	request,	it	renders	the	required	component(s)	into	an
HTML	string,	and	then	sends	it	as	a	response	to	the	client.	From	that	point	on,	the	client	takes	over	rendering	duties.

We	will	use	React	in	the	examples	below,	but	the	same	techniques	can	be	used	with	other	view	frameworks	that	can
render	on	the	server.

Redux	on	the	Server

When	using	Redux	with	server	rendering,	we	must	also	send	the	state	of	our	app	along	in	our	response,	so	the	client
can	use	it	as	the	initial	state.	This	is	important	because,	if	we	preload	any	data	before	generating	the	HTML,	we	want
the	client	to	also	have	access	to	this	data.	Otherwise,	the	markup	generated	on	the	client	won't	match	the	server
markup,	and	the	client	would	have	to	load	the	data	again.

To	send	the	data	down	to	the	client,	we	need	to:

create	a	fresh,	new	Redux	store	instance	on	every	request;
optionally	dispatch	some	actions;
pull	the	state	out	of	store;
and	then	pass	the	state	along	to	the	client.

On	the	client	side,	a	new	Redux	store	will	be	created	and	initialized	with	the	state	provided	from	the	server.
Redux's	only	job	on	the	server	side	is	to	provide	the	initial	state	of	our	app.

Setting	Up
In	the	following	recipe,	we	are	going	to	look	at	how	to	set	up	server-side	rendering.	We'll	use	the	simplistic	Counter
app	as	a	guide	and	show	how	the	server	can	render	state	ahead	of	time	based	on	the	request.

Install	Packages

For	this	example,	we'll	be	using	Express	as	a	simple	web	server.	We	also	need	to	install	the	React	bindings	for
Redux,	since	they	are	not	included	in	Redux	by	default.

npm	install	--save	express	react-redux

The	Server	Side
The	following	is	the	outline	for	what	our	server	side	is	going	to	look	like.	We	are	going	to	set	up	an	Express
middleware	using	app.use	to	handle	all	requests	that	come	in	to	our	server.	If	you're	unfamiliar	with	Express	or
middleware,	just	know	that	our	handleRender	function	will	be	called	every	time	the	server	receives	a	request.

Additionally,	as	we	are	using	ES6	and	JSX	syntax,	we	will	need	to	compile	with	Babel	(see	this	example	of	a	Node
Server	with	Babel)	and	the	React	preset.

	server.js	

import	path	from	'path'

import	Express	from	'express'

Server	Rendering

133

https://github.com/reduxjs/redux/tree/master/examples/counter
http://expressjs.com/
http://expressjs.com/guide/using-middleware.html
http://expressjs.com/api.html#app.use
https://babeljs.io/
https://github.com/babel/example-node-server
https://babeljs.io/docs/plugins/preset-react/

import	React	from	'react'

import	{	createStore	}	from	'redux'

import	{	Provider	}	from	'react-redux'

import	counterApp	from	'./reducers'

import	App	from	'./containers/App'

const	app	=	Express()

const	port	=	3000

//Serve	static	files

app.use('/static',	Express.static('static'))

//	This	is	fired	every	time	the	server	side	receives	a	request

app.use(handleRender)

//	We	are	going	to	fill	these	out	in	the	sections	to	follow

function	handleRender(req,	res)	{

		/*	...	*/

}

function	renderFullPage(html,	preloadedState)	{

		/*	...	*/

}

app.listen(port)

Handling	the	Request

The	first	thing	that	we	need	to	do	on	every	request	is	create	a	new	Redux	store	instance.	The	only	purpose	of	this
store	instance	is	to	provide	the	initial	state	of	our	application.

When	rendering,	we	will	wrap		<App	/>	,	our	root	component,	inside	a		<Provider>		to	make	the	store	available	to	all
components	in	the	component	tree,	as	we	saw	in	Usage	with	React.

The	key	step	in	server	side	rendering	is	to	render	the	initial	HTML	of	our	component	before	we	send	it	to	the	client
side.	To	do	this,	we	use	ReactDOMServer.renderToString().

We	then	get	the	initial	state	from	our	Redux	store	using		store.getState()	.	We	will	see	how	this	is	passed	along	in
our		renderFullPage		function.

import	{	renderToString	}	from	'react-dom/server'

function	handleRender(req,	res)	{

		//	Create	a	new	Redux	store	instance

		const	store	=	createStore(counterApp)

		//	Render	the	component	to	a	string

		const	html	=	renderToString(

				<Provider	store={store}>

						<App	/>

				</Provider>

)

		//	Grab	the	initial	state	from	our	Redux	store

		const	preloadedState	=	store.getState()

		//	Send	the	rendered	page	back	to	the	client

		res.send(renderFullPage(html,	preloadedState))

}

Inject	Initial	Component	HTML	and	State

The	final	step	on	the	server	side	is	to	inject	our	initial	component	HTML	and	initial	state	into	a	template	to	be	rendered
on	the	client	side.	To	pass	along	the	state,	we	add	a		<script>		tag	that	will	attach		preloadedState		to
	window.__PRELOADED_STATE__	.

Server	Rendering

134

https://facebook.github.io/react/docs/react-dom-server.html#rendertostring

The		preloadedState		will	then	be	available	on	the	client	side	by	accessing		window.__PRELOADED_STATE__	.

We	also	include	our	bundle	file	for	the	client-side	application	via	a	script	tag.	This	is	whatever	output	your	bundling
tool	provides	for	your	client	entry	point.	It	may	be	a	static	file	or	a	URL	to	a	hot	reloading	development	server.

function	renderFullPage(html,	preloadedState)	{

		return	`

				<!doctype	html>

				<html>

						<head>

								<title>Redux	Universal	Example</title>

						</head>

						<body>

								<div	id="root">${html}</div>

								<script>

										//	WARNING:	See	the	following	for	security	issues	around	embedding	JSON	in	HTML:

										//	http://redux.js.org/recipes/ServerRendering.html#security-considerations

										window.__PRELOADED_STATE__	=	${JSON.stringify(preloadedState).replace(

												/</g,

												'\\u003c'

)}

								</script>

								<script	src="/static/bundle.js"></script>

						</body>

				</html>

				`

}

The	Client	Side
The	client	side	is	very	straightforward.	All	we	need	to	do	is	grab	the	initial	state	from		window.__PRELOADED_STATE__	,	and
pass	it	to	our		createStore()		function	as	the	initial	state.

Let's	take	a	look	at	our	new	client	file:

	client.js	

import	React	from	'react'

import	{	hydrate	}	from	'react-dom'

import	{	createStore	}	from	'redux'

import	{	Provider	}	from	'react-redux'

import	App	from	'./containers/App'

import	counterApp	from	'./reducers'

//	Grab	the	state	from	a	global	variable	injected	into	the	server-generated	HTML

const	preloadedState	=	window.__PRELOADED_STATE__

//	Allow	the	passed	state	to	be	garbage-collected

delete	window.__PRELOADED_STATE__

//	Create	Redux	store	with	initial	state

const	store	=	createStore(counterApp,	preloadedState)

hydrate(

		<Provider	store={store}>

				<App	/>

		</Provider>,

		document.getElementById('root')

)

You	can	set	up	your	build	tool	of	choice	(Webpack,	Browserify,	etc.)	to	compile	a	bundle	file	into		static/bundle.js	.

Server	Rendering

135

When	the	page	loads,	the	bundle	file	will	be	started	up	and		ReactDOM.hydrate()		will	reuse	the	server-rendered	HTML.
This	will	connect	our	newly-started	React	instance	to	the	virtual	DOM	used	on	the	server.	Since	we	have	the	same
initial	state	for	our	Redux	store	and	used	the	same	code	for	all	our	view	components,	the	result	will	be	the	same	real
DOM.

And	that's	it!	That	is	all	we	need	to	do	to	implement	server	side	rendering.

But	the	result	is	pretty	vanilla.	It	essentially	renders	a	static	view	from	dynamic	code.	What	we	need	to	do	next	is	build
an	initial	state	dynamically	to	allow	that	rendered	view	to	be	dynamic.

Preparing	the	Initial	State
Because	the	client	side	executes	ongoing	code,	it	can	start	with	an	empty	initial	state	and	obtain	any	necessary	state
on	demand	and	over	time.	On	the	server	side,	rendering	is	synchronous	and	we	only	get	one	shot	to	render	our	view.
We	need	to	be	able	to	compile	our	initial	state	during	the	request,	which	will	have	to	react	to	input	and	obtain	external
state	(such	as	that	from	an	API	or	database).

Processing	Request	Parameters

The	only	input	for	server	side	code	is	the	request	made	when	loading	up	a	page	in	your	app	in	your	browser.	You	may
choose	to	configure	the	server	during	its	boot	(such	as	when	you	are	running	in	a	development	vs.	production
environment),	but	that	configuration	is	static.

The	request	contains	information	about	the	URL	requested,	including	any	query	parameters,	which	will	be	useful
when	using	something	like	React	Router.	It	can	also	contain	headers	with	inputs	like	cookies	or	authorization,	or
POST	body	data.	Let's	see	how	we	can	set	the	initial	counter	state	based	on	a	query	parameter.

	server.js	

import	qs	from	'qs'	//	Add	this	at	the	top	of	the	file

import	{	renderToString	}	from	'react-dom/server'

function	handleRender(req,	res)	{

		//	Read	the	counter	from	the	request,	if	provided

		const	params	=	qs.parse(req.query)

		const	counter	=	parseInt(params.counter,	10)	||	0

		//	Compile	an	initial	state

		let	preloadedState	=	{	counter	}

		//	Create	a	new	Redux	store	instance

		const	store	=	createStore(counterApp,	preloadedState)

		//	Render	the	component	to	a	string

		const	html	=	renderToString(

				<Provider	store={store}>

						<App	/>

				</Provider>

)

		//	Grab	the	initial	state	from	our	Redux	store

		const	finalState	=	store.getState()

		//	Send	the	rendered	page	back	to	the	client

		res.send(renderFullPage(html,	finalState))

}

The	code	reads	from	the	Express		Request		object	passed	into	our	server	middleware.	The	parameter	is	parsed	into	a
number	and	then	set	in	the	initial	state.	If	you	visit	http://localhost:3000/?counter=100	in	your	browser,	you'll	see	the
counter	starts	at	100.	In	the	rendered	HTML,	you'll	see	the	counter	output	as	100	and	the		__PRELOADED_STATE__	

Server	Rendering

136

https://reactjs.org/docs/react-dom.html#hydrate
https://github.com/ReactTraining/react-router
http://localhost:3000/?counter=100

variable	has	the	counter	set	in	it.

Async	State	Fetching

The	most	common	issue	with	server	side	rendering	is	dealing	with	state	that	comes	in	asynchronously.	Rendering	on
the	server	is	synchronous	by	nature,	so	it's	necessary	to	map	any	asynchronous	fetches	into	a	synchronous
operation.

The	easiest	way	to	do	this	is	to	pass	through	some	callback	back	to	your	synchronous	code.	In	this	case,	that	will	be	a
function	that	will	reference	the	response	object	and	send	back	our	rendered	HTML	to	the	client.	Don't	worry,	it's	not	as
hard	as	it	may	sound.

For	our	example,	we'll	imagine	there	is	an	external	datastore	that	contains	the	counter's	initial	value	(Counter	As	A
Service,	or	CaaS).	We'll	make	a	mock	call	over	to	them	and	build	our	initial	state	from	the	result.	We'll	start	by	building
out	our	API	call:

	api/counter.js	

function	getRandomInt(min,	max)	{

		return	Math.floor(Math.random()	*	(max	-	min))	+	min

}

export	function	fetchCounter(callback)	{

		setTimeout(()	=>	{

				callback(getRandomInt(1,	100))

		},	500)

}

Again,	this	is	just	a	mock	API,	so	we	use		setTimeout		to	simulate	a	network	request	that	takes	500	milliseconds	to
respond	(this	should	be	much	faster	with	a	real	world	API).	We	pass	in	a	callback	that	returns	a	random	number
asynchronously.	If	you're	using	a	Promise-based	API	client,	then	you	would	issue	this	callback	in	your		then		handler.

On	the	server	side,	we	simply	wrap	our	existing	code	in	the		fetchCounter		and	receive	the	result	in	the	callback:

	server.js	

//	Add	this	to	our	imports

import	{	fetchCounter	}	from	'./api/counter'

import	{	renderToString	}	from	'react-dom/server'

function	handleRender(req,	res)	{

		//	Query	our	mock	API	asynchronously

		fetchCounter(apiResult	=>	{

				//	Read	the	counter	from	the	request,	if	provided

				const	params	=	qs.parse(req.query)

				const	counter	=	parseInt(params.counter,	10)	||	apiResult	||	0

				//	Compile	an	initial	state

				let	preloadedState	=	{	counter	}

				//	Create	a	new	Redux	store	instance

				const	store	=	createStore(counterApp,	preloadedState)

				//	Render	the	component	to	a	string

				const	html	=	renderToString(

						<Provider	store={store}>

								<App	/>

						</Provider>

)

				//	Grab	the	initial	state	from	our	Redux	store

				const	finalState	=	store.getState()

Server	Rendering

137

				//	Send	the	rendered	page	back	to	the	client

				res.send(renderFullPage(html,	finalState))

		})

}

Because	we	call		res.send()		inside	of	the	callback,	the	server	will	hold	open	the	connection	and	won't	send	any	data
until	that	callback	executes.	You'll	notice	a	500ms	delay	is	now	added	to	each	server	request	as	a	result	of	our	new
API	call.	A	more	advanced	usage	would	handle	errors	in	the	API	gracefully,	such	as	a	bad	response	or	timeout.

Security	Considerations

Because	we	have	introduced	more	code	that	relies	on	user	generated	content	(UGC)	and	input,	we	have	increased
our	attack	surface	area	for	our	application.	It	is	important	for	any	application	that	you	ensure	your	input	is	properly
sanitized	to	prevent	things	like	cross-site	scripting	(XSS)	attacks	or	code	injections.

In	our	example,	we	take	a	rudimentary	approach	to	security.	When	we	obtain	the	parameters	from	the	request,	we
use		parseInt		on	the		counter		parameter	to	ensure	this	value	is	a	number.	If	we	did	not	do	this,	you	could	easily	get
dangerous	data	into	the	rendered	HTML	by	providing	a	script	tag	in	the	request.	That	might	look	like	this:		?counter=
</script><script>doSomethingBad();</script>	

For	our	simplistic	example,	coercing	our	input	into	a	number	is	sufficiently	secure.	If	you're	handling	more	complex
input,	such	as	freeform	text,	then	you	should	run	that	input	through	an	appropriate	sanitization	function,	such	as	xss-
filters.

Furthermore,	you	can	add	additional	layers	of	security	by	sanitizing	your	state	output.		JSON.stringify		can	be	subject
to	script	injections.	To	counter	this,	you	can	scrub	the	JSON	string	of	HTML	tags	and	other	dangerous	characters.
This	can	be	done	with	either	a	simple	text	replacement	on	the	string,	e.g.		JSON.stringify(state).replace(/</g,
'\\u003c')	,	or	via	more	sophisticated	libraries	such	as	serialize-javascript.

Next	Steps
You	may	want	to	read	Async	Actions	to	learn	more	about	expressing	asynchronous	flow	in	Redux	with	async
primitives	such	as	Promises	and	thunks.	Keep	in	mind	that	anything	you	learn	there	can	also	be	applied	to	universal
rendering.

If	you	use	something	like	React	Router,	you	might	also	want	to	express	your	data	fetching	dependencies	as	static
	fetchData()		methods	on	your	route	handler	components.	They	may	return	async	actions,	so	that	your		handleRender	
function	can	match	the	route	to	the	route	handler	component	classes,	dispatch		fetchData()		result	for	each	of	them,
and	render	only	after	the	Promises	have	resolved.	This	way	the	specific	API	calls	required	for	different	routes	are
colocated	with	the	route	handler	component	definitions.	You	can	also	use	the	same	technique	on	the	client	side	to
prevent	the	router	from	switching	the	page	until	its	data	has	been	loaded.

Server	Rendering

138

https://github.com/yahoo/xss-filters
https://github.com/yahoo/serialize-javascript
https://github.com/ReactTraining/react-router

Writing	Tests
Because	most	of	the	Redux	code	you	write	are	functions,	and	many	of	them	are	pure,	they	are	easy	to	test	without
mocking.

Setting	Up

We	recommend	Jest	as	the	testing	engine.	Note	that	it	runs	in	a	Node	environment,	so	you	won't	have	access	to	the
DOM.

npm	install	--save-dev	jest

To	use	it	together	with	Babel,	you	will	need	to	install		babel-jest	:

npm	install	--save-dev	babel-jest

and	configure	it	to	use	babel-preset-env	features	in		.babelrc	:

{

		"presets":	["@babel/preset-env"]

}

Then,	add	this	to		scripts		in	your		package.json	:

{

		...

		"scripts":	{

				...

				"test":	"jest",

				"test:watch":	"npm	test	--	--watch"

		},

		...

}

and	run		npm	test		to	run	it	once,	or		npm	run	test:watch		to	test	on	every	file	change.

Action	Creators

In	Redux,	action	creators	are	functions	which	return	plain	objects.	When	testing	action	creators,	we	want	to	test
whether	the	correct	action	creator	was	called	and	also	whether	the	right	action	was	returned.

Example

export	function	addTodo(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

can	be	tested	like:

import	*	as	actions	from	'../../actions/TodoActions'

import	*	as	types	from	'../../constants/ActionTypes'

Writing	Tests

139

http://facebook.github.io/jest/
http://babeljs.io
https://github.com/babel/babel/tree/master/packages/babel-preset-env

describe('actions',	()	=>	{

		it('should	create	an	action	to	add	a	todo',	()	=>	{

				const	text	=	'Finish	docs'

				const	expectedAction	=	{

						type:	types.ADD_TODO,

						text

				}

				expect(actions.addTodo(text)).toEqual(expectedAction)

		})

})

Async	Action	Creators

For	async	action	creators	using	Redux	Thunk	or	other	middleware,	it's	best	to	completely	mock	the	Redux	store	for
tests.	You	can	apply	the	middleware	to	a	mock	store	using	redux-mock-store.	You	can	also	use	fetch-mock	to	mock
the	HTTP	requests.

Example

import	'cross-fetch/polyfill'

function	fetchTodosRequest()	{

		return	{

				type:	FETCH_TODOS_REQUEST

		}

}

function	fetchTodosSuccess(body)	{

		return	{

				type:	FETCH_TODOS_SUCCESS,

				body

		}

}

function	fetchTodosFailure(ex)	{

		return	{

				type:	FETCH_TODOS_FAILURE,

				ex

		}

}

export	function	fetchTodos()	{

		return	dispatch	=>	{

				dispatch(fetchTodosRequest())

				return	fetch('http://example.com/todos')

						.then(res	=>	res.json())

						.then(body	=>	dispatch(fetchTodosSuccess(body)))

						.catch(ex	=>	dispatch(fetchTodosFailure(ex)))

		}

}

can	be	tested	like:

import	configureMockStore	from	'redux-mock-store'

import	thunk	from	'redux-thunk'

import	*	as	actions	from	'../../actions/TodoActions'

import	*	as	types	from	'../../constants/ActionTypes'

import	fetchMock	from	'fetch-mock'

import	expect	from	'expect'	//	You	can	use	any	testing	library

const	middlewares	=	[thunk]

const	mockStore	=	configureMockStore(middlewares)

describe('async	actions',	()	=>	{

		afterEach(()	=>	{

				fetchMock.restore()

Writing	Tests

140

https://github.com/gaearon/redux-thunk
https://github.com/arnaudbenard/redux-mock-store
http://www.wheresrhys.co.uk/fetch-mock/

		})

		it('creates	FETCH_TODOS_SUCCESS	when	fetching	todos	has	been	done',	()	=>	{

				fetchMock.getOnce('/todos',	{

						body:	{	todos:	['do	something']	},

						headers:	{	'content-type':	'application/json'	}

				})

				const	expectedActions	=	[

						{	type:	types.FETCH_TODOS_REQUEST	},

						{	type:	types.FETCH_TODOS_SUCCESS,	body:	{	todos:	['do	something']	}	}

]

				const	store	=	mockStore({	todos:	[]	})

				return	store.dispatch(actions.fetchTodos()).then(()	=>	{

						//	return	of	async	actions

						expect(store.getActions()).toEqual(expectedActions)

				})

		})

})

Reducers

A	reducer	should	return	the	new	state	after	applying	the	action	to	the	previous	state,	and	that's	the	behavior	tested
below.

Example

import	{	ADD_TODO	}	from	'../constants/ActionTypes'

const	initialState	=	[

		{

				text:	'Use	Redux',

				completed:	false,

				id:	0

		}

]

export	default	function	todos(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	ADD_TODO:

						return	[

								{

										id:	state.reduce((maxId,	todo)	=>	Math.max(todo.id,	maxId),	-1)	+	1,

										completed:	false,

										text:	action.text

								},

								...state

]

				default:

						return	state

		}

}

can	be	tested	like:

import	reducer	from	'../../structuring-reducers/todos'

import	*	as	types	from	'../../constants/ActionTypes'

describe('todos	reducer',	()	=>	{

		it('should	return	the	initial	state',	()	=>	{

				expect(reducer(undefined,	{})).toEqual([

						{

								text:	'Use	Redux',

								completed:	false,

								id:	0

						}

Writing	Tests

141

])

		})

		it('should	handle	ADD_TODO',	()	=>	{

				expect(

						reducer([],	{

								type:	types.ADD_TODO,

								text:	'Run	the	tests'

						})

).toEqual([

						{

								text:	'Run	the	tests',

								completed:	false,

								id:	0

						}

])

				expect(

						reducer(

								[

										{

												text:	'Use	Redux',

												completed:	false,

												id:	0

										}

],

								{

										type:	types.ADD_TODO,

										text:	'Run	the	tests'

								}

)

).toEqual([

						{

								text:	'Run	the	tests',

								completed:	false,

								id:	1

						},

						{

								text:	'Use	Redux',

								completed:	false,

								id:	0

						}

])

		})

})

Components

A	nice	thing	about	React	components	is	that	they	are	usually	small	and	only	rely	on	their	props.	That	makes	them
easy	to	test.

First,	we	will	install	Enzyme.	Enzyme	uses	the	React	Test	Utilities	underneath,	but	is	more	convenient,	readable,	and
powerful.

npm	install	--save-dev	enzyme

We	will	also	need	to	install	Enzyme	adapter	for	our	version	of	React.	Enzyme	has	adapters	that	provide	compatibility
with		React	16.x	,		React	15.x	,		React	0.14.x		and		React	0.13.x	.	If	you	are	using	React	16	you	can	run:

npm	install	--save-dev	enzyme-adapter-react-16

To	test	the	components	we	make	a		setup()		helper	that	passes	the	stubbed	callbacks	as	props	and	renders	the
component	with	shallow	rendering.	This	lets	individual	tests	assert	on	whether	the	callbacks	were	called	when
expected.

Writing	Tests

142

http://airbnb.io/enzyme/
https://facebook.github.io/react/docs/test-utils.html
http://airbnb.io/enzyme/docs/api/shallow.html

Example

import	React,	{	Component	}	from	'react'

import	PropTypes	from	'prop-types'

import	TodoTextInput	from	'./TodoTextInput'

class	Header	extends	Component	{

		handleSave(text)	{

				if	(text.length	!==	0)	{

						this.props.addTodo(text)

				}

		}

		render()	{

				return	(

						<header	className="header">

								<h1>todos</h1>

								<TodoTextInput

										newTodo={true}

										onSave={this.handleSave.bind(this)}

										placeholder="What	needs	to	be	done?"

								/>

						</header>

)

		}

}

Header.propTypes	=	{

		addTodo:	PropTypes.func.isRequired

}

export	default	Header

can	be	tested	like:

import	React	from	'react'

import	Enzyme,	{	shallow	}	from	'enzyme'

import	Adapter	from	'enzyme-adapter-react-16'

import	Header	from	'../../components/Header'

Enzyme.configure({	adapter:	new	Adapter()	})

function	setup()	{

		const	props	=	{

				addTodo:	jest.fn()

		}

		const	enzymeWrapper	=	shallow(<Header	{...props}	/>)

		return	{

				props,

				enzymeWrapper

		}

}

describe('components',	()	=>	{

		describe('Header',	()	=>	{

				it('should	render	self	and	subcomponents',	()	=>	{

						const	{	enzymeWrapper	}	=	setup()

						expect(enzymeWrapper.find('header').hasClass('header')).toBe(true)

						expect(enzymeWrapper.find('h1').text()).toBe('todos')

						const	todoInputProps	=	enzymeWrapper.find('TodoTextInput').props()

						expect(todoInputProps.newTodo).toBe(true)

						expect(todoInputProps.placeholder).toEqual('What	needs	to	be	done?')

				})

				it('should	call	addTodo	if	length	of	text	is	greater	than	0',	()	=>	{

						const	{	enzymeWrapper,	props	}	=	setup()

Writing	Tests

143

						const	input	=	enzymeWrapper.find('TodoTextInput')

						input.props().onSave('')

						expect(props.addTodo.mock.calls.length).toBe(0)

						input.props().onSave('Use	Redux')

						expect(props.addTodo.mock.calls.length).toBe(1)

				})

		})

})

Connected	Components

If	you	use	a	library	like	React	Redux,	you	might	be	using	higher-order	components	like		connect()	.	This	lets	you	inject
Redux	state	into	a	regular	React	component.

Consider	the	following		App		component:

import	{	connect	}	from	'react-redux'

class	App	extends	Component	{

		/*	...	*/

}

export	default	connect(mapStateToProps)(App)

In	a	unit	test,	you	would	normally	import	the		App		component	like	this:

import	App	from	'./App'

However,	when	you	import	it,	you're	actually	holding	the	wrapper	component	returned	by		connect()	,	and	not	the
	App		component	itself.	If	you	want	to	test	its	interaction	with	Redux,	this	is	good	news:	you	can	wrap	it	in	a
	<Provider>		with	a	store	created	specifically	for	this	unit	test.	But	sometimes	you	want	to	test	just	the	rendering	of	the
component,	without	a	Redux	store.

In	order	to	be	able	to	test	the	App	component	itself	without	having	to	deal	with	the	decorator,	we	recommend	you	to
also	export	the	undecorated	component:

import	{	connect	}	from	'react-redux'

//	Use	named	export	for	unconnected	component	(for	tests)

export	class	App	extends	Component	{

		/*	...	*/

}

//	Use	default	export	for	the	connected	component	(for	app)

export	default	connect(mapStateToProps)(App)

Since	the	default	export	is	still	the	decorated	component,	the	import	statement	pictured	above	will	work	as	before	so
you	won't	have	to	change	your	application	code.	However,	you	can	now	import	the	undecorated		App		components	in
your	test	file	like	this:

//	Note	the	curly	braces:	grab	the	named	export	instead	of	default	export

import	{	App	}	from	'./App'

And	if	you	need	both:

import	ConnectedApp,	{	App	}	from	'./App'

In	the	app	itself,	you	would	still	import	it	normally:

Writing	Tests

144

https://github.com/reduxjs/react-redux
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750
https://react-redux.js.org/api#connect
https://react-redux.js.org/api/provider

import	App	from	'./App'

You	would	only	use	the	named	export	for	tests.

A	Note	on	Mixing	ES6	Modules	and	CommonJS

If	you	are	using	ES6	in	your	application	source,	but	write	your	tests	in	ES5,	you	should	know	that	Babel	handles
the	interchangeable	use	of	ES6		import		and	CommonJS		require		through	its	interop	capability	to	run	two
module	formats	side-by-side,	but	the	behavior	is	slightly	different.	If	you	add	a	second	export	beside	your
default	export,	you	can	no	longer	import	the	default	using		require('./App')	.	Instead	you	have	to	use
	require('./App').default	.

Middleware

Middleware	functions	wrap	behavior	of		dispatch		calls	in	Redux,	so	to	test	this	modified	behavior	we	need	to	mock
the	behavior	of	the		dispatch		call.

Example

First,	we'll	need	a	middleware	function.	This	is	similar	to	the	real	redux-thunk.

const	thunk	=	({	dispatch,	getState	})	=>	next	=>	action	=>	{

		if	(typeof	action	===	'function')	{

				return	action(dispatch,	getState)

		}

		return	next(action)

}

We	need	to	create	a	fake		getState	,		dispatch	,	and		next		functions.	We	use		jest.fn()		to	create	stubs,	but	with
other	test	frameworks	you	would	likely	use	Sinon.

The	invoke	function	runs	our	middleware	in	the	same	way	Redux	does.

const	create	=	()	=>	{

		const	store	=	{

				getState:	jest.fn(()	=>	({})),

				dispatch:	jest.fn()

		}

		const	next	=	jest.fn()

		const	invoke	=	action	=>	thunk(store)(next)(action)

		return	{	store,	next,	invoke	}

}

We	test	that	our	middleware	is	calling	the		getState	,		dispatch	,	and		next		functions	at	the	right	time.

it('passes	through	non-function	action',	()	=>	{

		const	{	next,	invoke	}	=	create()

		const	action	=	{	type:	'TEST'	}

		invoke(action)

		expect(next).toHaveBeenCalledWith(action)

})

it('calls	the	function',	()	=>	{

		const	{	invoke	}	=	create()

		const	fn	=	jest.fn()

		invoke(fn)

		expect(fn).toHaveBeenCalled()

})

Writing	Tests

145

http://babeljs.io/docs/usage/modules/#interop
https://github.com/babel/babel/issues/2047
https://github.com/gaearon/redux-thunk/blob/master/src/index.js
https://sinonjs.org/

it('passes	dispatch	and	getState',	()	=>	{

		const	{	store,	invoke	}	=	create()

		invoke((dispatch,	getState)	=>	{

				dispatch('TEST	DISPATCH')

				getState()

		})

		expect(store.dispatch).toHaveBeenCalledWith('TEST	DISPATCH')

		expect(store.getState).toHaveBeenCalled()

})

In	some	cases,	you	will	need	to	modify	the		create		function	to	use	different	mock	implementations	of		getState		and
	next	.

Glossary

Enzyme:	Enzyme	is	a	JavaScript	Testing	utility	for	React	that	makes	it	easier	to	assert,	manipulate,	and	traverse
your	React	Components'	output.

React	Test	Utils:	Test	Utilities	for	React.	Used	by	Enzyme.

Shallow	rendering:	Shallow	rendering	lets	you	instantiate	a	component	and	effectively	get	the	result	of	its		render	
method	just	a	single	level	deep	instead	of	rendering	components	recursively	to	a	DOM.	Shallow	rendering	is
useful	for	unit	tests,	where	you	test	a	particular	component	only,	and	importantly	not	its	children.	This	also	means
that	changing	a	child	component	won't	affect	the	tests	for	the	parent	component.	Testing	a	component	and	all	its
children	can	be	accomplished	with	Enzyme's		mount()		method,	aka	full	DOM	rendering.

Writing	Tests

146

http://airbnb.io/enzyme/
http://facebook.github.io/react/docs/test-utils.html
http://airbnb.io/enzyme/docs/api/shallow.html
http://airbnb.io/enzyme/docs/api/mount.html

Computing	Derived	Data
Reselect	is	a	simple	library	for	creating	memoized,	composable	selector	functions.	Reselect	selectors	can	be	used	to
efficiently	compute	derived	data	from	the	Redux	store.

Motivation	for	Memoized	Selectors

Let's	revisit	the	Todos	List	example:

	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

const	getVisibleTodos	=	(todos,	filter)	=>	{

		switch	(filter)	{

				case	'SHOW_ALL':

						return	todos

				case	'SHOW_COMPLETED':

						return	todos.filter(t	=>	t.completed)

				case	'SHOW_ACTIVE':

						return	todos.filter(t	=>	!t.completed)

		}

}

const	mapStateToProps	=	state	=>	{

		return	{

				todos:	getVisibleTodos(state.todos,	state.visibilityFilter)

		}

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

const	VisibleTodoList	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

In	the	above	example,		mapStateToProps		calls		getVisibleTodos		to	calculate		todos	.	This	works	great,	but	there	is	a
drawback:		todos		is	calculated	every	time	the	component	is	updated.	If	the	state	tree	is	large,	or	the	calculation
expensive,	repeating	the	calculation	on	every	update	may	cause	performance	problems.	Reselect	can	help	to	avoid
these	unnecessary	recalculations.

Creating	a	Memoized	Selector

We	would	like	to	replace		getVisibleTodos		with	a	memoized	selector	that	recalculates		todos		when	the	value	of
	state.todos		or		state.visibilityFilter		changes,	but	not	when	changes	occur	in	other	(unrelated)	parts	of	the	state
tree.

Computing	Derived	Data

147

https://github.com/reduxjs/reselect

Reselect	provides	a	function		createSelector		for	creating	memoized	selectors.		createSelector		takes	an	array	of
input-selectors	and	a	transform	function	as	its	arguments.	If	the	Redux	state	tree	is	changed	in	a	way	that	causes	the
value	of	an	input-selector	to	change,	the	selector	will	call	its	transform	function	with	the	values	of	the	input-selectors
as	arguments	and	return	the	result.	If	the	values	of	the	input-selectors	are	the	same	as	the	previous	call	to	the
selector,	it	will	return	the	previously	computed	value	instead	of	calling	the	transform	function.

Let's	define	a	memoized	selector	named		getVisibleTodos		to	replace	the	non-memoized	version	above:

	selectors/index.js	

import	{	createSelector	}	from	'reselect'

const	getVisibilityFilter	=	state	=>	state.visibilityFilter

const	getTodos	=	state	=>	state.todos

export	const	getVisibleTodos	=	createSelector(

		[getVisibilityFilter,	getTodos],

		(visibilityFilter,	todos)	=>	{

				switch	(visibilityFilter)	{

						case	'SHOW_ALL':

								return	todos

						case	'SHOW_COMPLETED':

								return	todos.filter(t	=>	t.completed)

						case	'SHOW_ACTIVE':

								return	todos.filter(t	=>	!t.completed)

				}

		}

)

In	the	example	above,		getVisibilityFilter		and		getTodos		are	input-selectors.	They	are	created	as	ordinary	non-
memoized	selector	functions	because	they	do	not	transform	the	data	they	select.		getVisibleTodos		on	the	other	hand
is	a	memoized	selector.	It	takes		getVisibilityFilter		and		getTodos		as	input-selectors,	and	a	transform	function	that
calculates	the	filtered	todos	list.

Composing	Selectors

A	memoized	selector	can	itself	be	an	input-selector	to	another	memoized	selector.	Here	is		getVisibleTodos		being
used	as	an	input-selector	to	a	selector	that	further	filters	the	todos	by	keyword:

const	getKeyword	=	state	=>	state.keyword

const	getVisibleTodosFilteredByKeyword	=	createSelector(

		[getVisibleTodos,	getKeyword],

		(visibleTodos,	keyword)	=>

				visibleTodos.filter(todo	=>	todo.text.indexOf(keyword)	>	-1)

)

Connecting	a	Selector	to	the	Redux	Store

If	you	are	using	React	Redux,	you	can	call	selectors	as	regular	functions	inside		mapStateToProps()	:

	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

import	{	getVisibleTodos	}	from	'../selectors'

const	mapStateToProps	=	state	=>	{

		return	{

				todos:	getVisibleTodos(state)

Computing	Derived	Data

148

https://github.com/reduxjs/react-redux

		}

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

const	VisibleTodoList	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

Accessing	React	Props	in	Selectors

So	far	we	have	only	seen	selectors	receive	the	Redux	store	state	as	an	argument,	but	a	selector	can	receive	props
too.

For	this	example,	we're	going	to	extend	our	app	to	handle	multiple	Todo	lists.	Our	state	needs	to	be	refactored	so	that
it	holds	multiple	todo	lists,	which	each	have	their	own		todos		and		visibilityFilter		state.

We	also	need	to	refactor	our	reducers.	Now	that		todos		and		visibilityFilter		live	within	every	list's	state,	we	only
need	one		todoLists		reducer	to	manage	our	state.

	reducers/index.js	

import	{	combineReducers	}	from	'redux'

import	todoLists	from	'./todoLists'

export	default	combineReducers({

		todoLists

})

	reducers/todoLists.js	

//	Note	that	we're	hard	coding	three	lists	here	just	as	an	example.

//	In	the	real	world,	we'd	have	a	feature	to	add/remove	lists,

//	and	this	would	be	empty	initially.

const	initialState	=	{

		1:	{

				todos:	[],

				visibilityFilter:	'SHOW_ALL'

		},

		2:	{

				todos:	[],

				visibilityFilter:	'SHOW_ALL'

		},

		3:	{

				todos:	[],

				visibilityFilter:	'SHOW_ALL'

		}

}

const	addTodo	=	(state,	action)	=>	{

		const	todoList	=	state[action.listId]

		const	{	todos	}	=	todoList

		return	{

				...state,

				[action.listId]:	{

						...todoList,

Computing	Derived	Data

149

						todos:	[

								...todos,

								{

										id:	action.id,

										text:	action.text,

										completed:	false

								}

]

				}

		}

}

const	toggleTodo	=	(state,	action)	=>	{

		const	todoList	=	state[action.listId]

		const	{	todos	}	=	todoList

		return	{

				...state,

				[action.listId]:	{

						...todoList,

						todos:	todos.map(todo	=>

								(todo.id	===	action.id)

										?	{...todo,	completed:	!todo.completed}

										:	todo

)

				}

		}

}

const	setVisibilityFilter	=	(state,	action)	=>	{

		const	todoList	=	state[action.listId]

		return	{

				...state,

				[action.listId]:	{

						...todoList,

						visibilityFilter:	action.filter

				}

		}

}

export	default	const	todoLists	=	(state	=	initialState,	action)	=>	{

		//	make	sure	a	list	with	the	given	id	exists

		if	(!state[action.listId])	{

				return	state;

		}

		switch	(action.type)	{

				case	'ADD_TODO':

						return	addTodo(state,	action)

				case	'TOGGLE_TODO':

						return	toggleTodo(state,	action)

				case	'SET_VISIBILITY_FILTER':

						return	setVisibilityFilter(state,	action)

				default:

						return	state

		}

}

The		todoLists		reducer	now	handles	all	three	actions.	The	action	creators	will	now	need	to	be	passed	a		listId	:

	actions/index.js	

let	nextTodoId	=	0

export	const	addTodo	=	(text,	listId)	=>	({

		type:	'ADD_TODO',

		id:	nextTodoId++,

		text,

		listId

Computing	Derived	Data

150

})

export	const	setVisibilityFilter	=	(filter,	listId)	=>	({

		type:	'SET_VISIBILITY_FILTER',

		filter,

		listId

})

export	const	toggleTodo	=	(id,	listId)	=>	({

		type:	'TOGGLE_TODO',

		id,

		listId

})

export	const	VisibilityFilters	=	{

		SHOW_ALL:	'SHOW_ALL',

		SHOW_COMPLETED:	'SHOW_COMPLETED',

		SHOW_ACTIVE:	'SHOW_ACTIVE'

}

	components/TodoList.js	

import	React	from	'react'

import	PropTypes	from	'prop-types'

import	Todo	from	'./Todo'

const	TodoList	=	({	todos,	toggleTodo,	listId	})	=>	(

		

				{todos.map(todo	=>	(

						<Todo

								key={todo.id}

								{...todo}

								onClick={()	=>	toggleTodo(todo.id,	listId)}

						/>

))}

		

)

export	default	TodoList

Here	is	an		App		component	that	renders	three		VisibleTodoList		components,	each	of	which	has	a		listId		prop:

	components/App.js	

import	React	from	'react'

import	VisibleTodoList	from	'../containers/VisibleTodoList'

const	App	=	()	=>	(

		<div>

				<VisibleTodoList	listId="1"	/>

				<VisibleTodoList	listId="2"	/>

				<VisibleTodoList	listId="3"	/>

		</div>

)

Each		VisibleTodoList		container	should	select	a	different	slice	of	the	state	depending	on	the	value	of	the		listId	
prop,	so	we'll	modify		getVisibilityFilter		and		getTodos		to	accept	a	props	argument.

	selectors/todoSelectors.js	

import	{	createSelector	}	from	'reselect'

const	getVisibilityFilter	=	(state,	props)	=>

		state.todoLists[props.listId].visibilityFilter

const	getTodos	=	(state,	props)	=>	state.todoLists[props.listId].todos

const	getVisibleTodos	=	createSelector(

		[getVisibilityFilter,	getTodos],

Computing	Derived	Data

151

		(visibilityFilter,	todos)	=>	{

				switch	(visibilityFilter)	{

						case	'SHOW_COMPLETED':

								return	todos.filter(todo	=>	todo.completed)

						case	'SHOW_ACTIVE':

								return	todos.filter(todo	=>	!todo.completed)

						default:

								return	todos

				}

		}

)

export	default	getVisibleTodos

	props		can	be	passed	to		getVisibleTodos		from		mapStateToProps	:

const	mapStateToProps	=	(state,	props)	=>	{

		return	{

				todos:	getVisibleTodos(state,	props)

		}

}

So	now		getVisibleTodos		has	access	to		props	,	and	everything	seems	to	be	working	fine.

But	there	is	a	problem!

Using	the		getVisibleTodos		selector	with	multiple	instances	of	the		visibleTodoList		container	will	not	correctly
memoize:

	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

import	{	getVisibleTodos	}	from	'../selectors'

const	mapStateToProps	=	(state,	props)	=>	{

		return	{

				//	WARNING:	THE	FOLLOWING	SELECTOR	DOES	NOT	CORRECTLY	MEMOIZE

				todos:	getVisibleTodos(state,	props)

		}

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

const	VisibleTodoList	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

A	selector	created	with		createSelector		only	returns	the	cached	value	when	its	set	of	arguments	is	the	same	as	its
previous	set	of	arguments.	If	we	alternate	between	rendering		<VisibleTodoList	listId="1"	/>		and		<VisibleTodoList
listId="2"	/>	,	the	shared	selector	will	alternate	between	receiving		{listId:	1}		and		{listId:	2}		as	its		props	
argument.	This	will	cause	the	arguments	to	be	different	on	each	call,	so	the	selector	will	always	recompute	instead	of
returning	the	cached	value.	We'll	see	how	to	overcome	this	limitation	in	the	next	section.

Computing	Derived	Data

152

Sharing	Selectors	Across	Multiple	Components

The	examples	in	this	section	require	React	Redux	v4.3.0	or	greater

In	order	to	share	a	selector	across	multiple		VisibleTodoList		components	and	retain	memoization,	each	instance	of
the	component	needs	its	own	private	copy	of	the	selector.

Let's	create	a	function	named		makeGetVisibleTodos		that	returns	a	new	copy	of	the		getVisibleTodos		selector	each
time	it	is	called:

	selectors/todoSelectors.js	

import	{	createSelector	}	from	'reselect'

const	getVisibilityFilter	=	(state,	props)	=>

		state.todoLists[props.listId].visibilityFilter

const	getTodos	=	(state,	props)	=>	state.todoLists[props.listId].todos

const	makeGetVisibleTodos	=	()	=>	{

		return	createSelector(

				[getVisibilityFilter,	getTodos],

				(visibilityFilter,	todos)	=>	{

						switch	(visibilityFilter)	{

								case	'SHOW_COMPLETED':

										return	todos.filter(todo	=>	todo.completed)

								case	'SHOW_ACTIVE':

										return	todos.filter(todo	=>	!todo.completed)

								default:

										return	todos

						}

				}

)

}

export	default	makeGetVisibleTodos

We	also	need	a	way	to	give	each	instance	of	a	container	access	to	its	own	private	selector.	The		mapStateToProps	
argument	of		connect		can	help	with	this.

If	the		mapStateToProps		argument	supplied	to		connect		returns	a	function	instead	of	an	object,	it	will	be	used	to
create	an	individual		mapStateToProps		function	for	each	instance	of	the	container.

In	the	example	below		makeMapStateToProps		creates	a	new		getVisibleTodos		selector,	and	returns	a		mapStateToProps	
function	that	has	exclusive	access	to	the	new	selector:

const	makeMapStateToProps	=	()	=>	{

		const	getVisibleTodos	=	makeGetVisibleTodos()

		const	mapStateToProps	=	(state,	props)	=>	{

				return	{

						todos:	getVisibleTodos(state,	props)

				}

		}

		return	mapStateToProps

}

If	we	pass		makeMapStateToProps		to		connect	,	each	instance	of	the		VisibleTodosList		container	will	get	its	own
	mapStateToProps		function	with	a	private		getVisibleTodos		selector.	Memoization	will	now	work	correctly	regardless	of
the	render	order	of	the		VisibleTodoList		containers.

	containers/VisibleTodoList.js	

import	{	connect	}	from	'react-redux'

Computing	Derived	Data

153

import	{	toggleTodo	}	from	'../actions'

import	TodoList	from	'../components/TodoList'

import	{	makeGetVisibleTodos	}	from	'../selectors'

const	makeMapStateToProps	=	()	=>	{

		const	getVisibleTodos	=	makeGetVisibleTodos()

		const	mapStateToProps	=	(state,	props)	=>	{

				return	{

						todos:	getVisibleTodos(state,	props)

				}

		}

		return	mapStateToProps

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onTodoClick:	id	=>	{

						dispatch(toggleTodo(id))

				}

		}

}

const	VisibleTodoList	=	connect(

		makeMapStateToProps,

		mapDispatchToProps

)(TodoList)

export	default	VisibleTodoList

Next	Steps
Check	out	the	official	documentation	of	Reselect	as	well	as	its	FAQ.	Most	Redux	projects	start	using	Reselect	when
they	have	performance	problems	because	of	too	many	derived	computations	and	wasted	re-renders,	so	make	sure
you	are	familiar	with	it	before	you	build	something	big.	It	can	also	be	useful	to	study	its	source	code	so	you	don't	think
it's	magic.

Computing	Derived	Data

154

https://github.com/reduxjs/reselect
https://github.com/reduxjs/reselect#faq
https://github.com/reduxjs/reselect/blob/master/src/index.js

Implementing	Undo	History
Building	an	Undo	and	Redo	functionality	into	an	app	has	traditionally	required	conscious	effort	from	the	developer.	It	is
not	an	easy	problem	with	classical	MVC	frameworks	because	you	need	to	keep	track	of	every	past	state	by	cloning	all
relevant	models.	In	addition,	you	need	to	be	mindful	of	the	undo	stack	because	the	user-initiated	changes	should	be
undoable.

This	means	that	implementing	Undo	and	Redo	in	an	MVC	application	usually	forces	you	to	rewrite	parts	of	your
application	to	use	a	specific	data	mutation	pattern	like	Command.

With	Redux,	however,	implementing	undo	history	is	a	breeze.	There	are	three	reasons	for	this:

There	are	no	multiple	models—just	a	state	subtree	that	you	want	to	keep	track	of.
The	state	is	already	immutable,	and	mutations	are	already	described	as	discrete	actions,	which	is	close	to	the
undo	stack	mental	model.
The	reducer		(state,	action)	=>	state		signature	makes	it	natural	to	implement	generic	“reducer	enhancers”	or
“higher	order	reducers”.	They	are	functions	that	take	your	reducer	and	enhance	it	with	some	additional
functionality	while	preserving	its	signature.	Undo	history	is	exactly	such	a	case.

Before	proceeding,	make	sure	you	have	worked	through	the	basics	tutorial	and	understand	reducer	composition	well.
This	recipe	will	build	on	top	of	the	example	described	in	the	basics	tutorial.

In	the	first	part	of	this	recipe,	we	will	explain	the	underlying	concepts	that	make	Undo	and	Redo	possible	to	implement
in	a	generic	way.

In	the	second	part	of	this	recipe,	we	will	show	how	to	use	Redux	Undo	package	that	provides	this	functionality	out	of
the	box.

Understanding	Undo	History

Designing	the	State	Shape

Undo	history	is	also	part	of	your	app's	state,	and	there	is	no	reason	why	we	should	approach	it	differently.	Regardless
of	the	type	of	the	state	changing	over	time,	when	you	implement	Undo	and	Redo,	you	want	to	keep	track	of	the	history
of	this	state	at	different	points	in	time.

For	example,	the	state	shape	of	a	counter	app	might	look	like	this:

{

		counter:	10

}

Implementing	Undo	History

155

https://en.wikipedia.org/wiki/Command_pattern
https://github.com/omnidan/redux-undo
https://twitter.com/dan_abramov/status/647038407286390784

If	we	wanted	to	implement	Undo	and	Redo	in	such	an	app,	we'd	need	to	store	more	state	so	we	can	answer	the
following	questions:

Is	there	anything	left	to	undo	or	redo?
What	is	the	current	state?
What	are	the	past	(and	future)	states	in	the	undo	stack?

It	is	reasonable	to	suggest	that	our	state	shape	should	change	to	answer	these	questions:

{

		counter:	{

				past:	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9],

				present:	10,

				future:	[]

		}

}

Now,	if	user	presses	“Undo”,	we	want	it	to	change	to	move	into	the	past:

{

		counter:	{

				past:	[0,	1,	2,	3,	4,	5,	6,	7,	8],

				present:	9,

				future:	[10]

		}

}

And	further	yet:

{

		counter:	{

				past:	[0,	1,	2,	3,	4,	5,	6,	7],

				present:	8,

				future:	[9,	10]

		}

}

When	the	user	presses	“Redo”,	we	want	to	move	one	step	back	into	the	future:

{

		counter:	{

				past:	[0,	1,	2,	3,	4,	5,	6,	7,	8],

				present:	9,

				future:	[10]

		}

}

Finally,	if	the	user	performs	an	action	(e.g.	decrement	the	counter)	while	we're	in	the	middle	of	the	undo	stack,	we're
going	to	discard	the	existing	future:

{

		counter:	{

				past:	[0,	1,	2,	3,	4,	5,	6,	7,	8,	9],

				present:	8,

				future:	[]

		}

}

The	interesting	part	here	is	that	it	does	not	matter	whether	we	want	to	keep	an	undo	stack	of	numbers,	strings,	arrays,
or	objects.	The	structure	will	always	be	the	same:

Implementing	Undo	History

156

{

		counter:	{

				past:	[0,	1,	2],

				present:	3,

				future:	[4]

		}

}

{

		todos:	{

				past:	[

						[],

						[{	text:	'Use	Redux'	}],

						[{	text:	'Use	Redux',	complete:	true	}]

],

				present:	[

						{	text:	'Use	Redux',	complete:	true	},

						{	text:	'Implement	Undo'	}

],

				future:	[

						[

								{	text:	'Use	Redux',	complete:	true	},

								{	text:	'Implement	Undo',	complete:	true	}

]

]

		}

}

In	general,	it	looks	like	this:

{

		past:	Array<T>,

		present:	T,

		future:	Array<T>

}

It	is	also	up	to	us	whether	to	keep	a	single	top-level	history:

{

		past:	[

				{	counterA:	1,	counterB:	1	},

				{	counterA:	1,	counterB:	0	},

				{	counterA:	0,	counterB:	0	}

],

		present:	{	counterA:	2,	counterB:	1	},

		future:	[]

}

Or	many	granular	histories	so	user	can	undo	and	redo	actions	in	them	independently:

{

		counterA:	{

				past:	[1,	0],

				present:	2,

				future:	[]

		},

		counterB:	{

				past:	[0],

				present:	1,

				future:	[]

		}

}

We	will	see	later	how	the	approach	we	take	lets	us	choose	how	granular	Undo	and	Redo	need	to	be.

Implementing	Undo	History

157

Designing	the	Algorithm

Regardless	of	the	specific	data	type,	the	shape	of	the	undo	history	state	is	the	same:

{

		past:	Array<T>,

		present:	T,

		future:	Array<T>

}

Let's	talk	through	the	algorithm	to	manipulate	the	state	shape	described	above.	We	can	define	two	actions	to	operate
on	this	state:		UNDO		and		REDO	.	In	our	reducer,	we	will	do	the	following	steps	to	handle	these	actions:

Handling	Undo

Remove	the	last	element	from	the		past	.
Set	the		present		to	the	element	we	removed	in	the	previous	step.
Insert	the	old		present		state	at	the	beginning	of	the		future	.

Handling	Redo

Remove	the	first	element	from	the		future	.
Set	the		present		to	the	element	we	removed	in	the	previous	step.
Insert	the	old		present		state	at	the	end	of	the		past	.

Handling	Other	Actions

Insert	the		present		at	the	end	of	the		past	.
Set	the		present		to	the	new	state	after	handling	the	action.
Clear	the		future	.

First	Attempt:	Writing	a	Reducer

const	initialState	=	{

		past:	[],

		present:	null,	//	(?)	How	do	we	initialize	the	present?

		future:	[]

}

function	undoable(state	=	initialState,	action)	{

		const	{	past,	present,	future	}	=	state

		switch	(action.type)	{

				case	'UNDO':

						const	previous	=	past[past.length	-	1]

						const	newPast	=	past.slice(0,	past.length	-	1)

						return	{

								past:	newPast,

								present:	previous,

								future:	[present,	...future]

						}

				case	'REDO':

						const	next	=	future[0]

						const	newFuture	=	future.slice(1)

						return	{

								past:	[...past,	present],

								present:	next,

								future:	newFuture

						}

				default:

						//	(?)	How	do	we	handle	other	actions?

Implementing	Undo	History

158

						return	state

		}

}

This	implementation	isn't	usable	because	it	leaves	out	three	important	questions:

Where	do	we	get	the	initial		present		state	from?	We	don't	seem	to	know	it	beforehand.
Where	do	we	react	to	the	external	actions	to	save	the		present		to	the		past	?
How	do	we	actually	delegate	the	control	over	the		present		state	to	a	custom	reducer?

It	seems	that	reducer	isn't	the	right	abstraction,	but	we're	very	close.

Meet	Reducer	Enhancers

You	might	be	familiar	with	higher	order	functions.	If	you	use	React,	you	might	be	familiar	with	higher	order
components.	Here	is	a	variation	on	the	same	pattern,	applied	to	reducers.

A	reducer	enhancer	(or	a	higher	order	reducer)	is	a	function	that	takes	a	reducer,	and	returns	a	new	reducer	that	is
able	to	handle	new	actions,	or	to	hold	more	state,	delegating	control	to	the	inner	reducer	for	the	actions	it	doesn't
understand.	This	isn't	a	new	pattern—technically,		combineReducers()		is	also	a	reducer	enhancer	because	it	takes
reducers	and	returns	a	new	reducer.

A	reducer	enhancer	that	doesn't	do	anything	looks	like	this:

function	doNothingWith(reducer)	{

		return	function(state,	action)	{

				//	Just	call	the	passed	reducer

				return	reducer(state,	action)

		}

}

A	reducer	enhancer	that	combines	other	reducers	might	look	like	this:

function	combineReducers(reducers)	{

		return	function(state	=	{},	action)	{

				return	Object.keys(reducers).reduce((nextState,	key)	=>	{

						//	Call	every	reducer	with	the	part	of	the	state	it	manages

						nextState[key]	=	reducers[key](state[key],	action)

						return	nextState

				},	{})

		}

}

Second	Attempt:	Writing	a	Reducer	Enhancer

Now	that	we	have	a	better	understanding	of	reducer	enhancers,	we	can	see	that	this	is	exactly	what		undoable		should
have	been:

function	undoable(reducer)	{

		//	Call	the	reducer	with	empty	action	to	populate	the	initial	state

		const	initialState	=	{

				past:	[],

				present:	reducer(undefined,	{}),

				future:	[]

		}

		//	Return	a	reducer	that	handles	undo	and	redo

		return	function(state	=	initialState,	action)	{

				const	{	past,	present,	future	}	=	state

				switch	(action.type)	{

						case	'UNDO':

Implementing	Undo	History

159

https://en.wikipedia.org/wiki/Higher-order_function
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750

								const	previous	=	past[past.length	-	1]

								const	newPast	=	past.slice(0,	past.length	-	1)

								return	{

										past:	newPast,

										present:	previous,

										future:	[present,	...future]

								}

						case	'REDO':

								const	next	=	future[0]

								const	newFuture	=	future.slice(1)

								return	{

										past:	[...past,	present],

										present:	next,

										future:	newFuture

								}

						default:

								//	Delegate	handling	the	action	to	the	passed	reducer

								const	newPresent	=	reducer(present,	action)

								if	(present	===	newPresent)	{

										return	state

								}

								return	{

										past:	[...past,	present],

										present:	newPresent,

										future:	[]

								}

				}

		}

}

We	can	now	wrap	any	reducer	into		undoable		reducer	enhancer	to	teach	it	to	react	to		UNDO		and		REDO		actions.

//	This	is	a	reducer

function	todos(state	=	[],	action)	{

		/*	...	*/

}

//	This	is	also	a	reducer!

const	undoableTodos	=	undoable(todos)

import	{	createStore	}	from	'redux'

const	store	=	createStore(undoableTodos)

store.dispatch({

		type:	'ADD_TODO',

		text:	'Use	Redux'

})

store.dispatch({

		type:	'ADD_TODO',

		text:	'Implement	Undo'

})

store.dispatch({

		type:	'UNDO'

})

There	is	an	important	gotcha:	you	need	to	remember	to	append		.present		to	the	current	state	when	you	retrieve	it.
You	may	also	check		.past.length		and		.future.length		to	determine	whether	to	enable	or	to	disable	the	Undo	and
Redo	buttons,	respectively.

You	might	have	heard	that	Redux	was	influenced	by	Elm	Architecture.	It	shouldn't	come	as	a	surprise	that	this
example	is	very	similar	to	elm-undo-redo	package.

Using	Redux	Undo

Implementing	Undo	History

160

https://github.com/evancz/elm-architecture-tutorial/
http://package.elm-lang.org/packages/TheSeamau5/elm-undo-redo/2.0.0

This	was	all	very	informative,	but	can't	we	just	drop	a	library	and	use	it	instead	of	implementing		undoable		ourselves?
Sure,	we	can!	Meet	Redux	Undo,	a	library	that	provides	simple	Undo	and	Redo	functionality	for	any	part	of	your
Redux	tree.

In	this	part	of	the	recipe,	you	will	learn	how	to	make	the	Todo	List	example	undoable.	You	can	find	the	full	source	of
this	recipe	in	the		todos-with-undo		example	that	comes	with	Redux.

Installation

First	of	all,	you	need	to	run

npm	install	--save	redux-undo

This	installs	the	package	that	provides	the		undoable		reducer	enhancer.

Wrapping	the	Reducer

You	will	need	to	wrap	the	reducer	you	wish	to	enhance	with		undoable		function.	For	example,	if	you	exported	a
	todos		reducer	from	a	dedicated	file,	you	will	want	to	change	it	to	export	the	result	of	calling		undoable()		with	the
reducer	you	wrote:

	reducers/todos.js	

import	undoable,	{	distinctState	}	from	'redux-undo'

/*	...	*/

const	todos	=	(state	=	[],	action)	=>	{

		/*	...	*/

}

const	undoableTodos	=	undoable(todos,	{

		filter:	distinctState()

})

export	default	undoableTodos

The		distinctState()		filter	serves	to	ignore	the	actions	that	didn't	result	in	a	state	change.	There	are	many	other
options	to	configure	your	undoable	reducer,	like	setting	the	action	type	for	Undo	and	Redo	actions.

Note	that	your		combineReducers()		call	will	stay	exactly	as	it	was,	but	the		todos		reducer	will	now	refer	to	the	reducer
enhanced	with	Redux	Undo:

	reducers/index.js	

import	{	combineReducers	}	from	'redux'

import	todos	from	'./todos'

import	visibilityFilter	from	'./visibilityFilter'

const	todoApp	=	combineReducers({

		todos,

		visibilityFilter

})

export	default	todoApp

Implementing	Undo	History

161

https://github.com/omnidan/redux-undo
https://github.com/reduxjs/redux/tree/master/examples/todos-with-undo
https://github.com/omnidan/redux-undo#configuration

You	may	wrap	one	or	more	reducers	in		undoable		at	any	level	of	the	reducer	composition	hierarchy.	We	choose	to
wrap		todos		instead	of	the	top-level	combined	reducer	so	that	changes	to		visibilityFilter		are	not	reflected	in	the
undo	history.

Updating	the	Selectors

Now	the		todos		part	of	the	state	looks	like	this:

{

		visibilityFilter:	'SHOW_ALL',

		todos:	{

				past:	[

						[],

						[{	text:	'Use	Redux'	}],

						[{	text:	'Use	Redux',	complete:	true	}]

],

				present:	[

						{	text:	'Use	Redux',	complete:	true	},

						{	text:	'Implement	Undo'	}

],

				future:	[

						[

								{	text:	'Use	Redux',	complete:	true	},

								{	text:	'Implement	Undo',	complete:	true	}

]

]

		}

}

This	means	you	need	to	access	your	state	with		state.todos.present		instead	of	just		state.todos	:

	containers/VisibleTodoList.js	

const	mapStateToProps	=	state	=>	{

		return	{

				todos:	getVisibleTodos(state.todos.present,	state.visibilityFilter)

		}

}

Adding	the	Buttons

Now	all	you	need	to	do	is	add	the	buttons	for	the	Undo	and	Redo	actions.

First,	create	a	new	container	component	called		UndoRedo		for	these	buttons.	We	won't	bother	to	split	the
presentational	part	into	a	separate	file	because	it	is	very	small:

	containers/UndoRedo.js	

import	React	from	'react'

/*	...	*/

let	UndoRedo	=	({	canUndo,	canRedo,	onUndo,	onRedo	})	=>	(

		<p>

				<button	onClick={onUndo}	disabled={!canUndo}>

						Undo

				</button>

				<button	onClick={onRedo}	disabled={!canRedo}>

						Redo

				</button>

		</p>

)

Implementing	Undo	History

162

You	will	use		connect()		from	React	Redux	to	generate	a	container	component.	To	determine	whether	to	enable	Undo
and	Redo	buttons,	you	can	check		state.todos.past.length		and		state.todos.future.length	.	You	won't	need	to	write
action	creators	for	performing	undo	and	redo	because	Redux	Undo	already	provides	them:

	containers/UndoRedo.js	

/*	...	*/

import	{	ActionCreators	as	UndoActionCreators	}	from	'redux-undo'

import	{	connect	}	from	'react-redux'

/*	...	*/

const	mapStateToProps	=	state	=>	{

		return	{

				canUndo:	state.todos.past.length	>	0,

				canRedo:	state.todos.future.length	>	0

		}

}

const	mapDispatchToProps	=	dispatch	=>	{

		return	{

				onUndo:	()	=>	dispatch(UndoActionCreators.undo()),

				onRedo:	()	=>	dispatch(UndoActionCreators.redo())

		}

}

UndoRedo	=	connect(

		mapStateToProps,

		mapDispatchToProps

)(UndoRedo)

export	default	UndoRedo

Now	you	can	add		UndoRedo		component	to	the		App		component:

	components/App.js	

import	React	from	'react'

import	Footer	from	'./Footer'

import	AddTodo	from	'../containers/AddTodo'

import	VisibleTodoList	from	'../containers/VisibleTodoList'

import	UndoRedo	from	'../containers/UndoRedo'

const	App	=	()	=>	(

		<div>

				<AddTodo	/>

				<VisibleTodoList	/>

				<Footer	/>

				<UndoRedo	/>

		</div>

)

export	default	App

This	is	it!	Run		npm	install		and		npm	start		in	the	example	folder	and	try	it	out!

Implementing	Undo	History

163

https://github.com/reduxjs/react-redux
https://github.com/reduxjs/redux/tree/master/examples/todos-with-undo

Isolating	Redux	Sub-Apps
Consider	the	case	of	a	“big”	app	(contained	in	a		<BigApp>		component)	that	embeds	smaller	“sub-apps”	(contained	in
	<SubApp>		components):

import	React,	{	Component	}	from	'react'

import	SubApp	from	'./subapp'

class	BigApp	extends	Component	{

		render()	{

				return	(

						<div>

								<SubApp	/>

								<SubApp	/>

								<SubApp	/>

						</div>

)

		}

}

These		<SubApp>	s	will	be	completely	independent.	They	won't	share	data	or	actions,	and	won't	see	or	communicate
with	each	other.

It's	best	not	to	mix	this	approach	with	standard	Redux	reducer	composition.	For	typical	web	apps,	stick	with	reducer
composition.	For	“product	hubs”,	“dashboards”,	or	enterprise	software	that	groups	disparate	tools	into	a	unified
package,	give	the	sub-app	approach	a	try.

The	sub-app	approach	is	also	useful	for	large	teams	that	are	divided	by	product	or	feature	verticals.	These	teams	can
ship	sub-apps	independently	or	in	combination	with	an	enclosing	“app	shell”.

Below	is	a	sub-app's	root	connected	component.	As	usual,	it	can	render	more	components,	connected	or	not,	as
children.	Usually	we'd	render	it	in		<Provider>		and	be	done	with	it.

class	App	extends	Component	{	...	}

export	default	connect(mapStateToProps)(App)

However,	we	don't	have	to	call		ReactDOM.render(<Provider><App	/></Provider>)		if	we're	interested	in	hiding	the	fact
that	the	sub-app	component	is	a	Redux	app.

Maybe	we	want	to	be	able	to	run	multiple	instances	of	it	in	the	same	“bigger”	app	and	keep	it	as	a	complete	black	box,
with	Redux	being	an	implementation	detail.

To	hide	Redux	behind	a	React	API,	we	can	wrap	it	in	a	special	component	that	initializes	the	store	in	the	constructor:

import	React,	{	Component	}	from	'react'

import	{	Provider	}	from	'react-redux'

import	{	createStore	}	from	'redux'

import	reducer	from	'./reducers'

import	App	from	'./App'

class	SubApp	extends	Component	{

		constructor(props)	{

				super(props)

				this.store	=	createStore(reducer)

		}

		render()	{

				return	(

						<Provider	store={this.store}>

								<App	/>

						</Provider>

Isolating	Subapps

164

)

		}

}

This	way	every	instance	will	be	independent.

This	pattern	is	not	recommended	for	parts	of	the	same	app	that	share	data.	However,	it	can	be	useful	when	the	bigger
app	has	zero	access	to	the	smaller	apps'	internals,	and	we'd	like	to	keep	the	fact	that	they	are	implemented	with
Redux	as	an	implementation	detail.	Each	component	instance	will	have	its	own	store,	so	they	won't	“know”	about	each
other.

Isolating	Subapps

165

Structuring	Reducers
At	its	core,	Redux	is	really	a	fairly	simple	design	pattern:	all	your	"write"	logic	goes	into	a	single	function,	and	the	only
way	to	run	that	logic	is	to	give	Redux	a	plain	object	that	describes	something	that	has	happened.	The	Redux	store
calls	that	write	logic	function	and	passes	in	the	current	state	tree	and	the	descriptive	object,	the	write	logic	function
returns	some	new	state	tree,	and	the	Redux	store	notifies	any	subscribers	that	the	state	tree	has	changed.

Redux	puts	some	basic	constraints	on	how	that	write	logic	function	should	work.	As	described	in	Reducers,	it	has	to
have	a	signature	of		(previousState,	action)	=>	newState	,	is	known	as	a	reducer	function,	and	must	be	pure	and
predictable.

Beyond	that,	Redux	does	not	really	care	how	you	actually	structure	your	logic	inside	that	reducer	function,	as	long	as
it	obeys	those	basic	rules.	This	is	both	a	source	of	freedom	and	a	source	of	confusion.	However,	there	are	a	number
of	common	patterns	that	are	widely	used	when	writing	reducers,	as	well	as	a	number	of	related	topics	and	concepts	to
be	aware	of.	As	an	application	grows,	these	patterns	play	a	crucial	role	in	managing	reducer	code	complexity,
handling	real-world	data,	and	optimizing	UI	performance.

Prerequisite	Concepts	for	Writing	Reducers

Some	of	these	concepts	are	already	described	elsewhere	in	the	Redux	documentation.	Others	are	generic	and
applicable	outside	of	Redux	itself,	and	there	are	numerous	existing	articles	that	cover	these	concepts	in	detail.	These
concepts	and	techniques	form	the	foundation	of	writing	solid	Redux	reducer	logic.

It	is	vital	that	these	Prerequisite	Concepts	are	thoroughly	understood	before	moving	on	to	more	advanced	and
Redux-specific	techniques.	A	recommended	reading	list	is	available	at:

Prerequisite	Concepts

It's	also	important	to	note	that	some	of	these	suggestions	may	or	may	not	be	directly	applicable	based	on	architectural
decisions	in	a	specific	application.	For	example,	an	application	using	Immutable.js	Maps	to	store	data	would	likely
have	its	reducer	logic	structured	at	least	somewhat	differently	than	an	application	using	plain	Javascript	objects.	This
documentation	primarily	assumes	use	of	plain	Javascript	objects,	but	many	of	the	principles	would	still	apply	if	using
other	tools.

Reducer	Concepts	and	Techniques

Basic	Reducer	Structure
Splitting	Reducer	Logic
Refactoring	Reducers	Example
Using		combineReducers	
Beyond		combineReducers	
Normalizing	State	Shape
Updating	Normalized	Data
Reusing	Reducer	Logic
Immutable	Update	Patterns
Initializing	State

Structuring	Reducers

166

Structuring	Reducers

167

Prerequisite	Reducer	Concepts
As	described	in	Reducers,	a	Redux	reducer	function:

Should	have	a	signature	of		(previousState,	action)	=>	newState	,	similar	to	the	type	of	function	you	would	pass
to		Array.prototype.reduce(reducer,	?initialValue)	
Should	be	"pure",	which	means	the	reducer:

Does	not	perform	side	effects	(such	as	calling	API's	or	modifying	non-local	objects	or	variables).
Does	not	call	non-pure	functions	(like		Date.now		or		Math.random).
Does	not	mutate	its	arguments.	If	the	reducer	updates	state,	it	should	not	modify	the	existing	state	object	in-
place.	Instead,	it	should	generate	a	new	object	containing	the	necessary	changes.	The	same	approach
should	be	used	for	any	sub-objects	within	state	that	the	reducer	updates.

Note	on	immutability,	side	effects,	and	mutation

Mutation	is	discouraged	because	it	generally	breaks	time-travel	debugging,	and	React	Redux's		connect	
function:

For	time	traveling,	the	Redux	DevTools	expect	that	replaying	recorded	actions	would	output	a	state	value,
but	not	change	anything	else.	Side	effects	like	mutation	or	asynchronous	behavior	will	cause	time
travel	to	alter	behavior	between	steps,	breaking	the	application.
For	React	Redux,		connect		checks	to	see	if	the	props	returned	from	a		mapStateToProps		function	have
changed	in	order	to	determine	if	a	component	needs	to	update.	To	improve	performance,		connect		takes
some	shortcuts	that	rely	on	the	state	being	immutable,	and	uses	shallow	reference	equality	checks	to
detect	changes.	This	means	that	changes	made	to	objects	and	arrays	by	direct	mutation	will	not	be
detected,	and	components	will	not	re-render.

Other	side	effects	like	generating	unique	IDs	or	timestamps	in	a	reducer	also	make	the	code	unpredictable	and
harder	to	debug	and	test.

Because	of	these	rules,	it's	important	that	the	following	core	concepts	are	fully	understood	before	moving	on	to	other
specific	techniques	for	organizing	Redux	reducers:

Redux	Reducer	Basics

Key	concepts:

Thinking	in	terms	of	state	and	state	shape
Delegating	update	responsibility	by	slice	of	state	(reducer	composition)
Higher	order	reducers
Defining	reducer	initial	state

Reading	list:

Redux	Docs:	Reducers
Redux	Docs:	Reducing	Boilerplate
Redux	Docs:	Implementing	Undo	History
Redux	Docs:		combineReducers	
The	Power	of	Higher-Order	Reducers
Stack	Overflow:	Store	initial	state	and		combineReducers	
Stack	Overflow:	State	key	names	and		combineReducers	

Pure	Functions	and	Side	Effects

Prerequisite	Concepts

168

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
http://slides.com/omnidan/hor#/
http://stackoverflow.com/questions/33749759/read-stores-initial-state-in-redux-reducer
http://stackoverflow.com/questions/35667775/state-in-redux-react-app-has-a-property-with-the-name-of-the-reducer

Key	Concepts:

Side	effects
Pure	functions
How	to	think	in	terms	of	combining	functions

Reading	List:

The	Little	Idea	of	Functional	Programming
Understanding	Programmatic	Side-Effects
Learning	Functional	Programming	in	Javascript
An	Introduction	to	Reasonably	Pure	Functional	Programming

Immutable	Data	Management

Key	Concepts:

Mutability	vs	immutability
Immutably	updating	objects	and	arrays	safely
Avoiding	functions	and	statements	that	mutate	state

Reading	List:

Pros	and	Cons	of	Using	Immutability	With	React
Immutable	Data	using	ES6	and	Beyond
Immutable	Data	from	Scratch
Redux	Docs:	Using	the	Object	Spread	Operator

Normalizing	Data

Key	Concepts:

Database	structure	and	organization
Splitting	relational/nested	data	up	into	separate	tables
Storing	a	single	definition	for	a	given	item
Referring	to	items	by	IDs
Using	objects	keyed	by	item	IDs	as	lookup	tables,	and	arrays	of	IDs	to	track	ordering
Associating	items	in	relationships

Reading	List:

Database	Normalization	in	Simple	English
Idiomatic	Redux:	Normalizing	the	State	Shape
Normalizr	Documentation
Redux	Without	Profanity:	Normalizr
Querying	a	Redux	Store
Wikipedia:	Associative	Entity
Database	Design:	Many-to-Many
Avoiding	Accidental	Complexity	When	Structuring	Your	App	State

Prerequisite	Concepts

169

http://jaysoo.ca/2016/01/13/functional-programming-little-ideas/
http://c2fo.io/c2fo/programming/2016/05/11/understanding-programmatic-side-effects/
https://youtu.be/e-5obm1G_FY
https://www.sitepoint.com/an-introduction-to-reasonably-pure-functional-programming/
http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/
http://wecodetheweb.com/2016/02/12/immutable-javascript-using-es6-and-beyond/
https://ryanfunduk.com/articles/immutable-data-from-scratch/
http://www.essentialsql.com/get-ready-to-learn-sql-database-normalization-explained-in-simple-english/
https://egghead.io/lessons/javascript-redux-normalizing-the-state-shape
https://github.com/paularmstrong/normalizr
https://tonyhb.gitbooks.io/redux-without-profanity/content/normalizer.html
https://medium.com/@adamrackis/querying-a-redux-store-37db8c7f3b0f
https://en.wikipedia.org/wiki/Associative_entity
http://www.tomjewett.com/dbdesign/dbdesign.php?page=manymany.php
https://medium.com/@talkol/avoiding-accidental-complexity-when-structuring-your-app-state-6e6d22ad5e2a

Basic	Reducer	Structure	and	State	Shape

Basic	Reducer	Structure
First	and	foremost,	it's	important	to	understand	that	your	entire	application	really	only	has	one	single	reducer
function:	the	function	that	you've	passed	into		createStore		as	the	first	argument.	That	one	single	reducer	function
ultimately	needs	to	do	several	things:

The	first	time	the	reducer	is	called,	the		state		value	will	be		undefined	.	The	reducer	needs	to	handle	this	case	by
supplying	a	default	state	value	before	handling	the	incoming	action.
It	needs	to	look	at	the	previous	state	and	the	dispatched	action,	and	determine	what	kind	of	work	needs	to	be
done
Assuming	actual	changes	need	to	occur,	it	needs	to	create	new	objects	and	arrays	with	the	updated	data	and
return	those
If	no	changes	are	needed,	it	should	return	the	existing	state	as-is.

The	simplest	possible	approach	to	writing	reducer	logic	is	to	put	everything	into	a	single	function	declaration,	like	this:

function	counter(state,	action)	{

		if	(typeof	state	===	'undefined')	{

				state	=	0	//	If	state	is	undefined,	initialize	it	with	a	default	value

		}

		if	(action.type	===	'INCREMENT')	{

				return	state	+	1

		}	else	if	(action.type	===	'DECREMENT')	{

				return	state	-	1

		}	else	{

				return	state	//	In	case	an	action	is	passed	in	we	don't	understand

		}

}

Notice	that	this	simple	function	fulfills	all	the	basic	requirements.	It	returns	a	default	value	if	none	exists,	initializing	the
store;	it	determines	what	sort	of	update	needs	to	be	done	based	on	the	type	of	the	action,	and	returns	new	values;
and	it	returns	the	previous	state	if	no	work	needs	to	be	done.

There	are	some	simple	tweaks	that	can	be	made	to	this	reducer.	First,	repeated		if	/	else		statements	quickly	grow
tiresome,	so	it's	very	common	to	use		switch		statements	instead.	Second,	we	can	use	ES6's	default	parameter
values	to	handle	the	initial	"no	existing	data"	case.	With	those	changes,	the	reducer	would	look	like:

function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

This	is	the	basic	structure	that	a	typical	Redux	reducer	function	uses.

Basic	State	Shape

Basic	Reducer	Structure

170

Redux	encourages	you	to	think	about	your	application	in	terms	of	the	data	you	need	to	manage.	The	data	at	any	given
point	in	time	is	the	"state"	of	your	application,	and	the	structure	and	organization	of	that	state	is	typically	referred	to	as
its	"shape".	The	shape	of	your	state	plays	a	major	role	in	how	you	structure	your	reducer	logic.

A	Redux	state	usually	has	a	plain	Javascript	object	as	the	top	of	the	state	tree.	(It	is	certainly	possible	to	have	another
type	of	data	instead,	such	as	a	single	number,	an	array,	or	a	specialized	data	structure,	but	most	libraries	assume	that
the	top-level	value	is	a	plain	object.)	The	most	common	way	to	organize	data	within	that	top-level	object	is	to	further
divide	data	into	sub-trees,	where	each	top-level	key	represents	some	"domain"	or	"slice"	of	related	data.	For	example,
a	basic	Todo	app's	state	might	look	like:

{

		visibilityFilter:	'SHOW_ALL',

		todos:	[

				{

						text:	'Consider	using	Redux',

						completed:	true,

				},

				{

						text:	'Keep	all	state	in	a	single	tree',

						completed:	false

				}

]

}

In	this	example,		todos		and		visibilityFilter		are	both	top-level	keys	in	the	state,	and	each	represents	a	"slice"	of
data	for	some	particular	concept.

Most	applications	deal	with	multiple	types	of	data,	which	can	be	broadly	divided	into	three	categories:

Domain	data:	data	that	the	application	needs	to	show,	use,	or	modify	(such	as	"all	of	the	Todos	retrieved	from	the
server")
App	state:	data	that	is	specific	to	the	application's	behavior	(such	as	"Todo	#5	is	currently	selected",	or	"there	is	a
request	in	progress	to	fetch	Todos")
UI	state:	data	that	represents	how	the	UI	is	currently	displayed	(such	as	"The	EditTodo	modal	dialog	is	currently
open")

Because	the	store	represents	the	core	of	your	application,	you	should	define	your	state	shape	in	terms	of	your
domain	data	and	app	state,	not	your	UI	component	tree.	As	an	example,	a	shape	of
	state.leftPane.todoList.todos		would	be	a	bad	idea,	because	the	idea	of	"todos"	is	central	to	the	whole	application,
not	just	a	single	part	of	the	UI.	The		todos		slice	should	be	at	the	top	of	the	state	tree	instead.

There	will	rarely	be	a	1-to-1	correspondence	between	your	UI	tree	and	your	state	shape.	The	exception	to	that	might
be	if	you	are	explicitly	tracking	various	aspects	of	UI	data	in	your	Redux	store	as	well,	but	even	then	the	shape	of	the
UI	data	and	the	shape	of	the	domain	data	would	likely	be	different.

A	typical	app's	state	shape	might	look	roughly	like:

{

				domainData1	:	{},

				domainData2	:	{},

				appState1	:	{},

				appState2	:	{},

				ui	:	{

								uiState1	:	{},

								uiState2	:	{},

				}

}

Basic	Reducer	Structure

171

Basic	Reducer	Structure

172

Splitting	Up	Reducer	Logic
For	any	meaningful	application,	putting	all	your	update	logic	into	a	single	reducer	function	is	quickly	going	to	become
unmaintainable.	While	there's	no	single	rule	for	how	long	a	function	should	be,	it's	generally	agreed	that	functions
should	be	relatively	short	and	ideally	only	do	one	specific	thing.	Because	of	this,	it's	good	programming	practice	to
take	pieces	of	code	that	are	very	long	or	do	many	different	things,	and	break	them	into	smaller	pieces	that	are	easier
to	understand.

Since	a	Redux	reducer	is	just	a	function,	the	same	concept	applies.	You	can	split	some	of	your	reducer	logic	out	into
another	function,	and	call	that	new	function	from	the	parent	function.

These	new	functions	would	typically	fall	into	one	of	three	categories:

1.	 Small	utility	functions	containing	some	reusable	chunk	of	logic	that	is	needed	in	multiple	places	(which	may	or
may	not	be	actually	related	to	the	specific	business	logic)

2.	 Functions	for	handling	a	specific	update	case,	which	often	need	parameters	other	than	the	typical		(state,
action)		pair

3.	 Functions	which	handle	all	updates	for	a	given	slice	of	state.	These	functions	do	generally	have	the	typical
	(state,	action)		parameter	signature

For	clarity,	these	terms	will	be	used	to	distinguish	between	different	types	of	functions	and	different	use	cases:

reducer:	any	function	with	the	signature		(state,	action)	->	newState		(ie,	any	function	that	could	be	used	as	an
argument	to		Array.prototype.reduce)
root	reducer:	the	reducer	function	that	is	actually	passed	as	the	first	argument	to		createStore	.	This	is	the	only
part	of	the	reducer	logic	that	must	have	the		(state,	action)	->	newState		signature.
slice	reducer:	a	reducer	that	is	being	used	to	handle	updates	to	one	specific	slice	of	the	state	tree,	usually	done
by	passing	it	to		combineReducers	
case	function:	a	function	that	is	being	used	to	handle	the	update	logic	for	a	specific	action.	This	may	actually	be
a	reducer	function,	or	it	may	require	other	parameters	to	do	its	work	properly.
higher-order	reducer:	a	function	that	takes	a	reducer	function	as	an	argument,	and/or	returns	a	new	reducer
function	as	a	result	(such	as		combineReducers	,	or		redux-undo)

The	term	"sub-reducer"	has	also	been	used	in	various	discussions	to	mean	any	function	that	is	not	the	root	reducer,
although	the	term	is	not	very	precise.	Some	people	may	also	refer	to	some	functions	as	"business	logic"	(functions
that	relate	to	application-specific	behavior)	or	"utility	functions"	(generic	functions	that	are	not	application-specific).

Breaking	down	a	complex	process	into	smaller,	more	understandable	parts	is	usually	described	with	the	term
functional	decomposition.	This	term	and	concept	can	be	applied	generically	to	any	code.	However,	in	Redux	it	is
very	common	to	structure	reducer	logic	using	approach	#3,	where	update	logic	is	delegated	to	other	functions	based
on	slice	of	state.	Redux	refers	to	this	concept	as	reducer	composition,	and	it	is	by	far	the	most	widely-used
approach	to	structuring	reducer	logic.	In	fact,	it's	so	common	that	Redux	includes	a	utility	function	called
	combineReducers()	,	which	specifically	abstracts	the	process	of	delegating	work	to	other	reducer	functions	based	on
slices	of	state.	However,	it's	important	to	note	that	it	is	not	the	only	pattern	that	can	be	used.	In	fact,	it's	entirely
possible	to	use	all	three	approaches	for	splitting	up	logic	into	functions,	and	usually	a	good	idea	as	well.	The
Refactoring	Reducers	section	shows	some	examples	of	this	in	action.

Splitting	Reducer	Logic

173

http://stackoverflow.com/questions/947874/what-is-functional-decomposition

Refactoring	Reducer	Logic	Using	Functional
Decomposition	and	Reducer	Composition
It	may	be	helpful	to	see	examples	of	what	the	different	types	of	sub-reducer	functions	look	like	and	how	they	fit
together.	Let's	look	at	a	demonstration	of	how	a	large	single	reducer	function	can	be	refactored	into	a	composition	of
several	smaller	functions.

Note:	this	example	is	deliberately	written	in	a	verbose	style	in	order	to	illustrate	the	concepts	and	the	process	of
refactoring,	rather	than	perfectly	concise	code.

Initial	Reducer

Let's	say	that	our	initial	reducer	looks	like	this:

const	initialState	=	{

		visibilityFilter:	'SHOW_ALL',

		todos:	[]

}

function	appReducer(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	'SET_VISIBILITY_FILTER':	{

						return	Object.assign({},	state,	{

								visibilityFilter:	action.filter

						})

				}

				case	'ADD_TODO':	{

						return	Object.assign({},	state,	{

								todos:	state.todos.concat({

										id:	action.id,

										text:	action.text,

										completed:	false

								})

						})

				}

				case	'TOGGLE_TODO':	{

						return	Object.assign({},	state,	{

								todos:	state.todos.map(todo	=>	{

										if	(todo.id	!==	action.id)	{

												return	todo

										}

										return	Object.assign({},	todo,	{

												completed:	!todo.completed

										})

								})

						})

				}

				case	'EDIT_TODO':	{

						return	Object.assign({},	state,	{

								todos:	state.todos.map(todo	=>	{

										if	(todo.id	!==	action.id)	{

												return	todo

										}

										return	Object.assign({},	todo,	{

												text:	action.text

										})

								})

						})

				}

				default:

						return	state

		}

}

Refactoring	Reducers	Example

174

That	function	is	fairly	short,	but	already	becoming	overly	complex.	We're	dealing	with	two	different	areas	of	concern
(filtering	vs	managing	our	list	of	todos),	the	nesting	is	making	the	update	logic	harder	to	read,	and	it's	not	exactly	clear
what's	going	on	everywhere.

Extracting	Utility	Functions

A	good	first	step	might	be	to	break	out	a	utility	function	to	return	a	new	object	with	updated	fields.	There's	also	a
repeated	pattern	with	trying	to	update	a	specific	item	in	an	array	that	we	could	extract	to	a	function:

function	updateObject(oldObject,	newValues)	{

		//	Encapsulate	the	idea	of	passing	a	new	object	as	the	first	parameter

		//	to	Object.assign	to	ensure	we	correctly	copy	data	instead	of	mutating

		return	Object.assign({},	oldObject,	newValues)

}

function	updateItemInArray(array,	itemId,	updateItemCallback)	{

		const	updatedItems	=	array.map(item	=>	{

				if	(item.id	!==	itemId)	{

						//	Since	we	only	want	to	update	one	item,	preserve	all	others	as	they	are	now

						return	item

				}

				//	Use	the	provided	callback	to	create	an	updated	item

				const	updatedItem	=	updateItemCallback(item)

				return	updatedItem

		})

		return	updatedItems

}

function	appReducer(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	'SET_VISIBILITY_FILTER':	{

						return	updateObject(state,	{	visibilityFilter:	action.filter	})

				}

				case	'ADD_TODO':	{

						const	newTodos	=	state.todos.concat({

								id:	action.id,

								text:	action.text,

								completed:	false

						})

						return	updateObject(state,	{	todos:	newTodos	})

				}

				case	'TOGGLE_TODO':	{

						const	newTodos	=	updateItemInArray(state.todos,	action.id,	todo	=>	{

								return	updateObject(todo,	{	completed:	!todo.completed	})

						})

						return	updateObject(state,	{	todos:	newTodos	})

				}

				case	'EDIT_TODO':	{

						const	newTodos	=	updateItemInArray(state.todos,	action.id,	todo	=>	{

								return	updateObject(todo,	{	text:	action.text	})

						})

						return	updateObject(state,	{	todos:	newTodos	})

				}

				default:

						return	state

		}

}

That	reduced	the	duplication	and	made	things	a	bit	easier	to	read.

Extracting	Case	Reducers

Refactoring	Reducers	Example

175

Next,	we	can	split	each	specific	case	into	its	own	function:

//	Omitted

function	updateObject(oldObject,	newValues)	{}

function	updateItemInArray(array,	itemId,	updateItemCallback)	{}

function	setVisibilityFilter(state,	action)	{

		return	updateObject(state,	{	visibilityFilter:	action.filter	})

}

function	addTodo(state,	action)	{

		const	newTodos	=	state.todos.concat({

				id:	action.id,

				text:	action.text,

				completed:	false

		})

		return	updateObject(state,	{	todos:	newTodos	})

}

function	toggleTodo(state,	action)	{

		const	newTodos	=	updateItemInArray(state.todos,	action.id,	todo	=>	{

				return	updateObject(todo,	{	completed:	!todo.completed	})

		})

		return	updateObject(state,	{	todos:	newTodos	})

}

function	editTodo(state,	action)	{

		const	newTodos	=	updateItemInArray(state.todos,	action.id,	todo	=>	{

				return	updateObject(todo,	{	text:	action.text	})

		})

		return	updateObject(state,	{	todos:	newTodos	})

}

function	appReducer(state	=	initialState,	action)	{

		switch	(action.type)	{

				case	'SET_VISIBILITY_FILTER':

						return	setVisibilityFilter(state,	action)

				case	'ADD_TODO':

						return	addTodo(state,	action)

				case	'TOGGLE_TODO':

						return	toggleTodo(state,	action)

				case	'EDIT_TODO':

						return	editTodo(state,	action)

				default:

						return	state

		}

}

Now	it's	very	clear	what's	happening	in	each	case.	We	can	also	start	to	see	some	patterns	emerging.

Separating	Data	Handling	by	Domain

Our	app	reducer	is	still	aware	of	all	the	different	cases	for	our	application.	Let's	try	splitting	things	up	so	that	the	filter
logic	and	the	todo	logic	are	separated:

//	Omitted

function	updateObject(oldObject,	newValues)	{}

function	updateItemInArray(array,	itemId,	updateItemCallback)	{}

function	setVisibilityFilter(visibilityState,	action)	{

		//	Technically,	we	don't	even	care	about	the	previous	state

		return	action.filter

}

function	visibilityReducer(visibilityState	=	'SHOW_ALL',	action)	{

		switch	(action.type)	{

Refactoring	Reducers	Example

176

				case	'SET_VISIBILITY_FILTER':

						return	setVisibilityFilter(visibilityState,	action)

				default:

						return	visibilityState

		}

}

function	addTodo(todosState,	action)	{

		const	newTodos	=	todosState.concat({

				id:	action.id,

				text:	action.text,

				completed:	false

		})

		return	newTodos

}

function	toggleTodo(todosState,	action)	{

		const	newTodos	=	updateItemInArray(todosState,	action.id,	todo	=>	{

				return	updateObject(todo,	{	completed:	!todo.completed	})

		})

		return	newTodos

}

function	editTodo(todosState,	action)	{

		const	newTodos	=	updateItemInArray(todosState,	action.id,	todo	=>	{

				return	updateObject(todo,	{	text:	action.text	})

		})

		return	newTodos

}

function	todosReducer(todosState	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						return	addTodo(todosState,	action)

				case	'TOGGLE_TODO':

						return	toggleTodo(todosState,	action)

				case	'EDIT_TODO':

						return	editTodo(todosState,	action)

				default:

						return	todosState

		}

}

function	appReducer(state	=	initialState,	action)	{

		return	{

				todos:	todosReducer(state.todos,	action),

				visibilityFilter:	visibilityReducer(state.visibilityFilter,	action)

		}

}

Notice	that	because	the	two	"slice	of	state"	reducers	are	now	getting	only	their	own	part	of	the	whole	state	as
arguments,	they	no	longer	need	to	return	complex	nested	state	objects,	and	are	now	simpler	as	a	result.

Reducing	Boilerplate

We're	almost	done.	Since	many	people	don't	like	switch	statements,	it's	very	common	to	use	a	function	that	creates	a
lookup	table	of	action	types	to	case	functions.	We'll	use	the		createReducer		function	described	in	Reducing
Boilerplate:

//	Omitted

function	updateObject(oldObject,	newValues)	{}

function	updateItemInArray(array,	itemId,	updateItemCallback)	{}

function	createReducer(initialState,	handlers)	{

		return	function	reducer(state	=	initialState,	action)	{

				if	(handlers.hasOwnProperty(action.type))	{

Refactoring	Reducers	Example

177

						return	handlers[action.type](state,	action)

				}	else	{

						return	state

				}

		}

}

//	Omitted

function	setVisibilityFilter(visibilityState,	action)	{}

const	visibilityReducer	=	createReducer('SHOW_ALL',	{

		SET_VISIBILITY_FILTER:	setVisibilityFilter

})

//	Omitted

function	addTodo(todosState,	action)	{}

function	toggleTodo(todosState,	action)	{}

function	editTodo(todosState,	action)	{}

const	todosReducer	=	createReducer([],	{

		ADD_TODO:	addTodo,

		TOGGLE_TODO:	toggleTodo,

		EDIT_TODO:	editTodo

})

function	appReducer(state	=	initialState,	action)	{

		return	{

				todos:	todosReducer(state.todos,	action),

				visibilityFilter:	visibilityReducer(state.visibilityFilter,	action)

		}

}

Combining	Reducers	by	Slice

As	our	last	step,	we	can	now	use	Redux's	built-in		combineReducers		utility	to	handle	the	"slice-of-state"	logic	for	our
top-level	app	reducer.	Here's	the	final	result:

//	Reusable	utility	functions

function	updateObject(oldObject,	newValues)	{

		//	Encapsulate	the	idea	of	passing	a	new	object	as	the	first	parameter

		//	to	Object.assign	to	ensure	we	correctly	copy	data	instead	of	mutating

		return	Object.assign({},	oldObject,	newValues)

}

function	updateItemInArray(array,	itemId,	updateItemCallback)	{

		const	updatedItems	=	array.map(item	=>	{

				if	(item.id	!==	itemId)	{

						//	Since	we	only	want	to	update	one	item,	preserve	all	others	as	they	are	now

						return	item

				}

				//	Use	the	provided	callback	to	create	an	updated	item

				const	updatedItem	=	updateItemCallback(item)

				return	updatedItem

		})

		return	updatedItems

}

function	createReducer(initialState,	handlers)	{

		return	function	reducer(state	=	initialState,	action)	{

				if	(handlers.hasOwnProperty(action.type))	{

						return	handlers[action.type](state,	action)

				}	else	{

						return	state

				}

		}

}

//	Handler	for	a	specific	case	("case	reducer")

Refactoring	Reducers	Example

178

function	setVisibilityFilter(visibilityState,	action)	{

		//	Technically,	we	don't	even	care	about	the	previous	state

		return	action.filter

}

//	Handler	for	an	entire	slice	of	state	("slice	reducer")

const	visibilityReducer	=	createReducer('SHOW_ALL',	{

		SET_VISIBILITY_FILTER:	setVisibilityFilter

})

//	Case	reducer

function	addTodo(todosState,	action)	{

		const	newTodos	=	todosState.concat({

				id:	action.id,

				text:	action.text,

				completed:	false

		})

		return	newTodos

}

//	Case	reducer

function	toggleTodo(todosState,	action)	{

		const	newTodos	=	updateItemInArray(todosState,	action.id,	todo	=>	{

				return	updateObject(todo,	{	completed:	!todo.completed	})

		})

		return	newTodos

}

//	Case	reducer

function	editTodo(todosState,	action)	{

		const	newTodos	=	updateItemInArray(todosState,	action.id,	todo	=>	{

				return	updateObject(todo,	{	text:	action.text	})

		})

		return	newTodos

}

//	Slice	reducer

const	todosReducer	=	createReducer([],	{

		ADD_TODO:	addTodo,

		TOGGLE_TODO:	toggleTodo,

		EDIT_TODO:	editTodo

})

//	"Root	reducer"

const	appReducer	=	combineReducers({

		visibilityFilter:	visibilityReducer,

		todos:	todosReducer

})

We	now	have	examples	of	several	kinds	of	split-up	reducer	functions:	helper	utilities	like		updateObject		and
	createReducer	,	handlers	for	specific	cases	like		setVisibilityFilter		and		addTodo	,	and	slice-of-state	handlers	like
	visibilityReducer		and		todosReducer	.	We	also	can	see	that		appReducer		is	an	example	of	a	"root	reducer".

Although	the	final	result	in	this	example	is	noticeably	longer	than	the	original	version,	this	is	primarily	due	to	the
extraction	of	the	utility	functions,	the	addition	of	comments,	and	some	deliberate	verbosity	for	the	sake	of	clarity,	such
as	separate	return	statements.	Looking	at	each	function	individually,	the	amount	of	responsibility	is	now	smaller,	and
the	intent	is	hopefully	clearer.	Also,	in	a	real	application,	these	functions	would	probably	then	be	split	into	separate
files	such	as		reducerUtilities.js	,		visibilityReducer.js	,		todosReducer.js	,	and		rootReducer.js	.

Refactoring	Reducers	Example

179

Using		combineReducers	

Core	Concepts
The	most	common	state	shape	for	a	Redux	app	is	a	plain	Javascript	object	containing	"slices"	of	domain-specific	data
at	each	top-level	key.	Similarly,	the	most	common	approach	to	writing	reducer	logic	for	that	state	shape	is	to	have
"slice	reducer"	functions,	each	with	the	same		(state,	action)		signature,	and	each	responsible	for	managing	all
updates	to	that	specific	slice	of	state.	Multiple	slice	reducers	can	respond	to	the	same	action,	independently	update
their	own	slice	as	needed,	and	the	updated	slices	are	combined	into	the	new	state	object.

Because	this	pattern	is	so	common,	Redux	provides	the		combineReducers		utility	to	implement	that	behavior.	It	is	an
example	of	a	higher-order	reducer,	which	takes	an	object	full	of	slice	reducer	functions,	and	returns	a	new	reducer
function.

There	are	several	important	ideas	to	be	aware	of	when	using		combineReducers	:

First	and	foremost,		combineReducers		is	simply	a	utility	function	to	simplify	the	most	common	use	case	when
writing	Redux	reducers.	You	are	not	required	to	use	it	in	your	own	application,	and	it	does	not	handle	every
possible	scenario.	It	is	entirely	possible	to	write	reducer	logic	without	using	it,	and	it	is	quite	common	to	need	to
write	custom	reducer	logic	for	cases	that		combineReducer		does	not	handle.	(See	Beyond		combineReducers		for
examples	and	suggestions.)
While	Redux	itself	is	not	opinionated	about	how	your	state	is	organized,		combineReducers		enforces	several	rules
to	help	users	avoid	common	errors.	(See		combineReducers		for	details.)
One	frequently	asked	question	is	whether	Redux	"calls	all	reducers"	when	dispatching	an	action.	Since	there
really	is	only	one	root	reducer	function,	the	default	answer	is	"no,	it	does	not".	However,		combineReducers		has
specific	behavior	that	does	work	that	way.	In	order	to	assemble	the	new	state	tree,		combineReducers		will	call	each
slice	reducer	with	its	current	slice	of	state	and	the	current	action,	giving	the	slice	reducer	a	chance	to	respond	and
update	its	slice	of	state	if	needed.	So,	in	that	sense,	using		combineReducers		does	"call	all	reducers",	or	at	least	all
of	the	slice	reducers	it	is	wrapping.
You	can	use	it	at	all	levels	of	your	reducer	structure,	not	just	to	create	the	root	reducer.	It's	very	common	to	have
multiple	combined	reducers	in	various	places,	which	are	composed	together	to	create	the	root	reducer.

Defining	State	Shape
There	are	two	ways	to	define	the	initial	shape	and	contents	of	your	store's	state.	First,	the		createStore		function	can
take		preloadedState		as	its	second	argument.	This	is	primarily	intended	for	initializing	the	store	with	state	that	was
previously	persisted	elsewhere,	such	as	the	browser's	localStorage.	The	other	way	is	for	the	root	reducer	to	return	the
initial	state	value	when	the	state	argument	is		undefined	.	These	two	approaches	are	described	in	more	detail	in
Initializing	State,	but	there	are	some	additional	concerns	to	be	aware	of	when	using		combineReducers	.

	combineReducers		takes	an	object	full	of	slice	reducer	functions,	and	creates	a	function	that	outputs	a	corresponding
state	object	with	the	same	keys.	This	means	that	if	no	preloaded	state	is	provided	to		createStore	,	the	naming	of	the
keys	in	the	input	slice	reducer	object	will	define	the	naming	of	the	keys	in	the	output	state	object.	The	correlation
between	these	names	is	not	always	apparent,	especially	when	using	ES6	features	such	as	default	module	exports
and	object	literal	shorthands.

Here's	an	example	of	how	use	of	ES6	object	literal	shorthand	with		combineReducers		can	define	the	state	shape:

//	reducers.js

export	default	(theDefaultReducer	=	(state	=	0,	action)	=>	state)

Using	combineReducers

180

export	const	firstNamedReducer	=	(state	=	1,	action)	=>	state

export	const	secondNamedReducer	=	(state	=	2,	action)	=>	state

//	rootReducer.js

import	{	combineReducers,	createStore	}	from	'redux'

import	theDefaultReducer,	{

		firstNamedReducer,

		secondNamedReducer

}	from	'./reducers'

//	Use	ES6	object	literal	shorthand	syntax	to	define	the	object	shape

const	rootReducer	=	combineReducers({

		theDefaultReducer,

		firstNamedReducer,

		secondNamedReducer

})

const	store	=	createStore(rootReducer)

console.log(store.getState())

//	{theDefaultReducer	:	0,	firstNamedReducer	:	1,	secondNamedReducer	:	2}

Notice	that	because	we	used	the	ES6	shorthand	for	defining	an	object	literal,	the	key	names	in	the	resulting	state	are
the	same	as	the	variable	names	from	the	imports.	This	may	not	always	be	the	desired	behavior,	and	is	often	a	cause
of	confusion	for	those	who	aren't	as	familiar	with	ES6	syntax.

Also,	the	resulting	names	are	a	bit	odd.	It's	generally	not	a	good	practice	to	actually	include	words	like	"reducer"	in
your	state	key	names	-	the	keys	should	simply	reflect	the	domain	or	type	of	data	they	hold.	This	means	we	should
either	explicitly	specify	the	names	of	the	keys	in	the	slice	reducer	object	to	define	the	keys	in	the	output	state	object,
or	carefully	rename	the	variables	for	the	imported	slice	reducers	to	set	up	the	keys	when	using	the	shorthand	object
literal	syntax.

A	better	usage	might	look	like:

import	{	combineReducers,	createStore	}	from	'redux'

//	Rename	the	default	import	to	whatever	name	we	want.	We	can	also	rename	a	named	import.

import	defaultState,	{

		firstNamedReducer,

		secondNamedReducer	as	secondState

}	from	'./reducers'

const	rootReducer	=	combineReducers({

		defaultState,	//	key	name	same	as	the	carefully	renamed	default	export

		firstState:	firstNamedReducer,	//	specific	key	name	instead	of	the	variable	name

		secondState	//	key	name	same	as	the	carefully	renamed	named	export

})

const	reducerInitializedStore	=	createStore(rootReducer)

console.log(reducerInitializedStore.getState())

//	{defaultState	:	0,	firstState	:	1,	secondState	:	2}

This	state	shape	better	reflects	the	data	involved,	because	we	took	care	to	set	up	the	keys	we	passed	to
	combineReducers	.

Using	combineReducers

181

Beyond		combineReducers	
The		combineReducers		utility	included	with	Redux	is	very	useful,	but	is	deliberately	limited	to	handle	a	single	common
use	case:	updating	a	state	tree	that	is	a	plain	Javascript	object,	by	delegating	the	work	of	updating	each	slice	of	state
to	a	specific	slice	reducer.	It	does	not	handle	other	use	cases,	such	as	a	state	tree	made	up	of	Immutable.js	Maps,
trying	to	pass	other	portions	of	the	state	tree	as	an	additional	argument	to	a	slice	reducer,	or	performing	"ordering"	of
slice	reducer	calls.	It	also	does	not	care	how	a	given	slice	reducer	does	its	work.

The	common	question,	then,	is	"How	can	I	use		combineReducers		to	handle	these	other	use	cases?".	The	answer	to
that	is	simply:	"you	don't	-	you	probably	need	to	use	something	else".	Once	you	go	past	the	core	use	case	for
	combineReducers	,	it's	time	to	use	more	"custom"	reducer	logic,	whether	it	be	specific	logic	for	a	one-off	use	case,
or	a	reusable	function	that	could	be	widely	shared.	Here's	some	suggestions	for	dealing	with	a	couple	of	these	typical
use	cases,	but	feel	free	to	come	up	with	your	own	approaches.

Using	slice	reducers	with	Immutable.js	objects
Since		combineReducers		currently	only	works	with	plain	Javascript	objects,	an	application	that	uses	an	Immutable.js
Map	object	for	the	top	of	its	state	tree	could	not	use		combineReducers		to	manage	that	Map.	Since	many	developers	do
use	Immutable.js,	there	are	a	number	of	published	utilities	that	provide	equivalent	functionality,	such	as	redux-
immutable.	This	package	provides	its	own	implementation	of		combineReducers		that	knows	how	to	iterate	over	an
Immutable	Map	instead	of	a	plain	Javascript	object.

Sharing	data	between	slice	reducers
Similarly,	if		sliceReducerA		happens	to	need	some	data	from		sliceReducerB	's	slice	of	state	in	order	to	handle	a
particular	action,	or		sliceReducerB		happens	to	need	the	entire	state	as	an	argument,		combineReducers		does	not
handle	that	itself.	This	could	be	resolved	by	writing	a	custom	function	that	knows	to	pass	the	needed	data	as	an
additional	argument	in	those	specific	cases,	such	as:

function	combinedReducer(state,	action)	{

		switch	(action.type)	{

				case	'A_TYPICAL_ACTION':	{

						return	{

								a:	sliceReducerA(state.a,	action),

								b:	sliceReducerB(state.b,	action)

						}

				}

				case	'SOME_SPECIAL_ACTION':	{

						return	{

								//	specifically	pass	state.b	as	an	additional	argument

								a:	sliceReducerA(state.a,	action,	state.b),

								b:	sliceReducerB(state.b,	action)

						}

				}

				case	'ANOTHER_SPECIAL_ACTION':	{

						return	{

								a:	sliceReducerA(state.a,	action),

								//	specifically	pass	the	entire	state	as	an	additional	argument

								b:	sliceReducerB(state.b,	action,	state)

						}

				}

				default:

						return	state

		}

}

Beyond	combineReducers

182

https://github.com/gajus/redux-immutable

Another	alternative	to	the	"shared-slice	updates"	issue	would	be	to	simply	put	more	data	into	the	action.	This	is	easily
accomplished	using	thunk	functions	or	a	similar	approach,	per	this	example:

function	someSpecialActionCreator()	{

		return	(dispatch,	getState)	=>	{

				const	state	=	getState()

				const	dataFromB	=	selectImportantDataFromB(state)

				dispatch({

						type:	'SOME_SPECIAL_ACTION',

						payload:	{

								dataFromB

						}

				})

		}

}

Because	the	data	from	B's	slice	is	already	in	the	action,	the	parent	reducer	doesn't	have	to	do	anything	special	to
make	that	data	available	to		sliceReducerA	.

A	third	approach	would	be	to	use	the	reducer	generated	by		combineReducers		to	handle	the	"simple"	cases	where	each
slice	reducer	can	update	itself	independently,	but	also	use	another	reducer	to	handle	the	"special"	cases	where	data
needs	to	be	shared	across	slices.	Then,	a	wrapping	function	could	call	both	of	those	reducers	in	turn	to	generate	the
final	result:

const	combinedReducer	=	combineReducers({

		a:	sliceReducerA,

		b:	sliceReducerB

})

function	crossSliceReducer(state,	action)	{

		switch	(action.type)	{

				case	'SOME_SPECIAL_ACTION':	{

						return	{

								//	specifically	pass	state.b	as	an	additional	argument

								a:	handleSpecialCaseForA(state.a,	action,	state.b),

								b:	sliceReducerB(state.b,	action)

						}

				}

				default:

						return	state

		}

}

function	rootReducer(state,	action)	{

		const	intermediateState	=	combinedReducer(state,	action)

		const	finalState	=	crossSliceReducer(intermediateState,	action)

		return	finalState

}

As	it	turns	out,	there's	a	useful	utility	called	reduce-reducers	that	can	make	that	process	easier.	It	simply	takes
multiple	reducers	and	runs		reduce()		on	them,	passing	the	intermediate	state	values	to	the	next	reducer	in	line:

//	Same	as	the	"manual"	rootReducer	above

const	rootReducer	=	reduceReducers(combinedReducers,	crossSliceReducer)

Note	that	if	you	use		reduceReducers	,	you	should	make	sure	that	the	first	reducer	in	the	list	is	able	to	define	the	initial
state,	since	the	later	reducers	will	generally	assume	that	the	entire	state	already	exists	and	not	try	to	provide	defaults.

Further	Suggestions

Beyond	combineReducers

183

https://github.com/acdlite/reduce-reducers

Again,	it's	important	to	understand	that	Redux	reducers	are	just	functions.	While		combineReducers		is	useful,	it's	just
one	tool	in	the	toolbox.	Functions	can	contain	conditional	logic	other	than	switch	statements,	functions	can	be
composed	to	wrap	each	other,	and	functions	can	call	other	functions.	Maybe	you	need	one	of	your	slice	reducers	to
be	able	to	reset	its	state,	and	to	only	respond	to	specific	actions	overall.	You	could	do:

const	undoableFilteredSliceA	=	compose(

		undoReducer,

		filterReducer('ACTION_1',	'ACTION_2'),

		sliceReducerA

)

const	rootReducer	=	combineReducers({

		a:	undoableFilteredSliceA,

		b:	normalSliceReducerB

})

Note	that		combineReducers		doesn't	know	or	care	that	there's	anything	special	about	the	reducer	function	that's
responsible	for	managing		a	.	We	didn't	need	to	modify		combineReducers		to	specifically	know	how	to	undo	things	-	we
just	built	up	the	pieces	we	needed	into	a	new	composed	function.

Also,	while		combineReducers		is	the	one	reducer	utility	function	that's	built	into	Redux,	there's	a	wide	variety	of	third-
party	reducer	utilities	that	have	published	for	reuse.	The	Redux	Addons	Catalog	lists	many	of	the	third-party	utilities
that	are	available.	Or,	if	none	of	the	published	utilities	solve	your	use	case,	you	can	always	write	a	function	yourself
that	does	just	exactly	what	you	need.

Beyond	combineReducers

184

https://github.com/markerikson/redux-ecosystem-links

Normalizing	State	Shape
Many	applications	deal	with	data	that	is	nested	or	relational	in	nature.	For	example,	a	blog	editor	could	have	many
Posts,	each	Post	could	have	many	Comments,	and	both	Posts	and	Comments	would	be	written	by	a	User.	Data	for
this	kind	of	application	might	look	like:

const	blogPosts	=	[

		{

				id:	'post1',

				author:	{	username:	'user1',	name:	'User	1'	},

				body:	'......',

				comments:	[

						{

								id:	'comment1',

								author:	{	username:	'user2',	name:	'User	2'	},

								comment:	'.....'

						},

						{

								id:	'comment2',

								author:	{	username:	'user3',	name:	'User	3'	},

								comment:	'.....'

						}

]

		},

		{

				id:	'post2',

				author:	{	username:	'user2',	name:	'User	2'	},

				body:	'......',

				comments:	[

						{

								id:	'comment3',

								author:	{	username:	'user3',	name:	'User	3'	},

								comment:	'.....'

						},

						{

								id:	'comment4',

								author:	{	username:	'user1',	name:	'User	1'	},

								comment:	'.....'

						},

						{

								id:	'comment5',

								author:	{	username:	'user3',	name:	'User	3'	},

								comment:	'.....'

						}

]

		}

		//	and	repeat	many	times

]

Notice	that	the	structure	of	the	data	is	a	bit	complex,	and	some	of	the	data	is	repeated.	This	is	a	concern	for	several
reasons:

When	a	piece	of	data	is	duplicated	in	several	places,	it	becomes	harder	to	make	sure	that	it	is	updated
appropriately.
Nested	data	means	that	the	corresponding	reducer	logic	has	to	be	more	nested	and	therefore	more	complex.	In
particular,	trying	to	update	a	deeply	nested	field	can	become	very	ugly	very	fast.
Since	immutable	data	updates	require	all	ancestors	in	the	state	tree	to	be	copied	and	updated	as	well,	and	new
object	references	will	cause	connected	UI	components	to	re-render,	an	update	to	a	deeply	nested	data	object
could	force	totally	unrelated	UI	components	to	re-render	even	if	the	data	they're	displaying	hasn't	actually
changed.

Because	of	this,	the	recommended	approach	to	managing	relational	or	nested	data	in	a	Redux	store	is	to	treat	a
portion	of	your	store	as	if	it	were	a	database,	and	keep	that	data	in	a	normalized	form.

Normalizing	State	Shape

185

Designing	a	Normalized	State
The	basic	concepts	of	normalizing	data	are:

Each	type	of	data	gets	its	own	"table"	in	the	state.
Each	"data	table"	should	store	the	individual	items	in	an	object,	with	the	IDs	of	the	items	as	keys	and	the	items
themselves	as	the	values.
Any	references	to	individual	items	should	be	done	by	storing	the	item's	ID.
Arrays	of	IDs	should	be	used	to	indicate	ordering.

An	example	of	a	normalized	state	structure	for	the	blog	example	above	might	look	like:

{

				posts	:	{

								byId	:	{

												"post1"	:	{

																id	:	"post1",

																author	:	"user1",

																body	:	"......",

																comments	:	["comment1",	"comment2"]

												},

												"post2"	:	{

																id	:	"post2",

																author	:	"user2",

																body	:	"......",

																comments	:	["comment3",	"comment4",	"comment5"]

												}

								},

								allIds	:	["post1",	"post2"]

				},

				comments	:	{

								byId	:	{

												"comment1"	:	{

																id	:	"comment1",

																author	:	"user2",

																comment	:	".....",

												},

												"comment2"	:	{

																id	:	"comment2",

																author	:	"user3",

																comment	:	".....",

												},

												"comment3"	:	{

																id	:	"comment3",

																author	:	"user3",

																comment	:	".....",

												},

												"comment4"	:	{

																id	:	"comment4",

																author	:	"user1",

																comment	:	".....",

												},

												"comment5"	:	{

																id	:	"comment5",

																author	:	"user3",

																comment	:	".....",

												},

								},

								allIds	:	["comment1",	"comment2",	"comment3",	"commment4",	"comment5"]

				},

				users	:	{

								byId	:	{

												"user1"	:	{

																username	:	"user1",

																name	:	"User	1",

												},

												"user2"	:	{

																username	:	"user2",

																name	:	"User	2",

												},

Normalizing	State	Shape

186

												"user3"	:	{

																username	:	"user3",

																name	:	"User	3",

												}

								},

								allIds	:	["user1",	"user2",	"user3"]

				}

}

This	state	structure	is	much	flatter	overall.	Compared	to	the	original	nested	format,	this	is	an	improvement	in	several
ways:

Because	each	item	is	only	defined	in	one	place,	we	don't	have	to	try	to	make	changes	in	multiple	places	if	that
item	is	updated.
The	reducer	logic	doesn't	have	to	deal	with	deep	levels	of	nesting,	so	it	will	probably	be	much	simpler.
The	logic	for	retrieving	or	updating	a	given	item	is	now	fairly	simple	and	consistent.	Given	an	item's	type	and	its
ID,	we	can	directly	look	it	up	in	a	couple	simple	steps,	without	having	to	dig	through	other	objects	to	find	it.
Since	each	data	type	is	separated,	an	update	like	changing	the	text	of	a	comment	would	only	require	new	copies
of	the	"comments	>	byId	>	comment"	portion	of	the	tree.	This	will	generally	mean	fewer	portions	of	the	UI	that
need	to	update	because	their	data	has	changed.	In	contrast,	updating	a	comment	in	the	original	nested	shape
would	have	required	updating	the	comment	object,	the	parent	post	object,	the	array	of	all	post	objects,	and	likely
have	caused	all	of	the	Post	components	and	Comment	components	in	the	UI	to	re-render	themselves.

Note	that	a	normalized	state	structure	generally	implies	that	more	components	are	connected	and	each	component	is
responsible	for	looking	up	its	own	data,	as	opposed	to	a	few	connected	components	looking	up	large	amounts	of	data
and	passing	all	that	data	downwards.	As	it	turns	out,	having	connected	parent	components	simply	pass	item	IDs	to
connected	children	is	a	good	pattern	for	optimizing	UI	performance	in	a	React	Redux	application,	so	keeping	state
normalized	plays	a	key	role	in	improving	performance.

Organizing	Normalized	Data	in	State
A	typical	application	will	likely	have	a	mixture	of	relational	data	and	non-relational	data.	While	there	is	no	single	rule
for	exactly	how	those	different	types	of	data	should	be	organized,	one	common	pattern	is	to	put	the	relational	"tables"
under	a	common	parent	key,	such	as	"entities".	A	state	structure	using	this	approach	might	look	like:

{

				simpleDomainData1:	{....},

				simpleDomainData2:	{....},

				entities	:	{

								entityType1	:	{....},

								entityType2	:	{....}

				},

				ui	:	{

								uiSection1	:	{....},

								uiSection2	:	{....}

				}

}

This	could	be	expanded	in	a	number	of	ways.	For	example,	an	application	that	does	a	lot	of	editing	of	entities	might
want	to	keep	two	sets	of	"tables"	in	the	state,	one	for	the	"current"	item	values	and	one	for	the	"work-in-progress"	item
values.	When	an	item	is	edited,	its	values	could	be	copied	into	the	"work-in-progress"	section,	and	any	actions	that
update	it	would	be	applied	to	the	"work-in-progress"	copy,	allowing	the	editing	form	to	be	controlled	by	that	set	of	data
while	another	part	of	the	UI	still	refers	to	the	original	version.	"Resetting"	the	edit	form	would	simply	require	removing
the	item	from	the	"work-in-progress"	section	and	re-copying	the	original	data	from	"current"	to	"work-in-progress",
while	"applying"	the	edits	would	involve	copying	the	values	from	the	"work-in-progress"	section	to	the	"current"
section.

Normalizing	State	Shape

187

Relationships	and	Tables
Because	we're	treating	a	portion	of	our	Redux	store	as	a	"database",	many	of	the	principles	of	database	design	also
apply	here	as	well.	For	example,	if	we	have	a	many-to-many	relationship,	we	can	model	that	using	an	intermediate
table	that	stores	the	IDs	of	the	corresponding	items	(often	known	as	a	"join	table"	or	an	"associative	table").	For
consistency,	we	would	probably	also	want	to	use	the	same		byId		and		allIds		approach	that	we	used	for	the	actual
item	tables,	like	this:

{

				entities:	{

								authors	:	{	byId	:	{},	allIds	:	[]	},

								books	:	{	byId	:	{},	allIds	:	[]	},

								authorBook	:	{

												byId	:	{

																1	:	{

																				id	:	1,

																				authorId	:	5,

																				bookId	:	22

																},

																2	:	{

																				id	:	2,

																				authorId	:	5,

																				bookId	:	15,

																},

																3	:	{

																				id	:	3,

																				authorId	:	42,

																				bookId	:	12

																}

												},

												allIds	:	[1,	2,	3]

								}

				}

}

Operations	like	"Look	up	all	books	by	this	author",	can	then	be	accomplished	easily	with	a	single	loop	over	the	join
table.	Given	the	typical	amounts	of	data	in	a	client	application	and	the	speed	of	Javascript	engines,	this	kind	of
operation	is	likely	to	have	sufficiently	fast	performance	for	most	use	cases.

Normalizing	Nested	Data
Because	APIs	frequently	send	back	data	in	a	nested	form,	that	data	needs	to	be	transformed	into	a	normalized	shape
before	it	can	be	included	in	the	state	tree.	The	Normalizr	library	is	usually	used	for	this	task.	You	can	define	schema
types	and	relations,	feed	the	schema	and	the	response	data	to	Normalizr,	and	it	will	output	a	normalized
transformation	of	the	response.	That	output	can	then	be	included	in	an	action	and	used	to	update	the	store.	See	the
Normalizr	documentation	for	more	details	on	its	usage.

Normalizing	State	Shape

188

https://github.com/paularmstrong/normalizr

Managing	Normalized	Data
As	mentioned	in	Normalizing	State	Shape,	the	Normalizr	library	is	frequently	used	to	transform	nested	response	data
into	a	normalized	shape	suitable	for	integration	into	the	store.	However,	that	doesn't	address	the	issue	of	executing
further	updates	to	that	normalized	data	as	it's	being	used	elsewhere	in	the	application.	There	are	a	variety	of	different
approaches	that	you	can	use,	based	on	your	own	preference.	We'll	use	the	example	of	adding	a	new	Comment	to	a
Post.

Standard	Approaches

Simple	Merging

One	approach	is	to	merge	the	contents	of	the	action	into	the	existing	state.	In	this	case,	we	need	to	do	a	deep
recursive	merge,	not	just	a	shallow	copy.	The	Lodash		merge		function	can	handle	this	for	us:

import	merge	from	'lodash/merge'

function	commentsById(state	=	{},	action)	{

		switch	(action.type)	{

				default:	{

						if	(action.entities	&&	action.entities.comments)	{

								return	merge({},	state,	action.entities.comments.byId)

						}

						return	state

				}

		}

}

This	requires	the	least	amount	of	work	on	the	reducer	side,	but	does	require	that	the	action	creator	potentially	do	a	fair
amount	of	work	to	organize	the	data	into	the	correct	shape	before	the	action	is	dispatched.	It	also	doesn't	handle
trying	to	delete	an	item.

Slice	Reducer	Composition

If	we	have	a	nested	tree	of	slice	reducers,	each	slice	reducer	will	need	to	know	how	to	respond	to	this	action
appropriately.	We	will	need	to	include	all	the	relevant	data	in	the	action.	We	need	to	update	the	correct	Post	object
with	the	comment's	ID,	create	a	new	Comment	object	using	that	ID	as	a	key,	and	include	the	Comment's	ID	in	the	list
of	all	Comment	IDs.	Here's	how	the	pieces	for	this	might	fit	together:

//	actions.js

function	addComment(postId,	commentText)	{

		//	Generate	a	unique	ID	for	this	comment

		const	commentId	=	generateId('comment')

		return	{

				type:	'ADD_COMMENT',

				payload:	{

						postId,

						commentId,

						commentText

				}

		}

}

//	reducers/posts.js

function	addComment(state,	action)	{

		const	{	payload	}	=	action

		const	{	postId,	commentId	}	=	payload

Updating	Normalized	Data

189

		//	Look	up	the	correct	post,	to	simplify	the	rest	of	the	code

		const	post	=	state[postId]

		return	{

				...state,

				//	Update	our	Post	object	with	a	new	"comments"	array

				[postId]:	{

						...post,

						comments:	post.comments.concat(commentId)

				}

		}

}

function	postsById(state	=	{},	action)	{

		switch	(action.type)	{

				case	'ADD_COMMENT':

						return	addComment(state,	action)

				default:

						return	state

		}

}

function	allPosts(state	=	[],	action)	{

		//	omitted	-	no	work	to	be	done	for	this	example

}

const	postsReducer	=	combineReducers({

		byId:	postsById,

		allIds:	allPosts

})

//	reducers/comments.js

function	addCommentEntry(state,	action)	{

		const	{	payload	}	=	action

		const	{	commentId,	commentText	}	=	payload

		//	Create	our	new	Comment	object

		const	comment	=	{	id:	commentId,	text:	commentText	}

		//	Insert	the	new	Comment	object	into	the	updated	lookup	table

		return	{

				...state,

				[commentId]:	comment

		}

}

function	commentsById(state	=	{},	action)	{

		switch	(action.type)	{

				case	'ADD_COMMENT':

						return	addCommentEntry(state,	action)

				default:

						return	state

		}

}

function	addCommentId(state,	action)	{

		const	{	payload	}	=	action

		const	{	commentId	}	=	payload

		//	Just	append	the	new	Comment's	ID	to	the	list	of	all	IDs

		return	state.concat(commentId)

}

function	allComments(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_COMMENT':

						return	addCommentId(state,	action)

				default:

						return	state

		}

}

const	commentsReducer	=	combineReducers({

		byId:	commentsById,

Updating	Normalized	Data

190

		allIds:	allComments

})

The	example	is	a	bit	long,	because	it's	showing	how	all	the	different	slice	reducers	and	case	reducers	fit	together.
Note	the	delegation	involved	here.	The		postsById		slice	reducer	delegates	the	work	for	this	case	to		addComment	,
which	inserts	the	new	Comment's	ID	into	the	correct	Post	item.	Meanwhile,	both	the		commentsById		and		allComments	
slice	reducers	have	their	own	case	reducers,	which	update	the	Comments	lookup	table	and	list	of	all	Comment	IDs
appropriately.

Other	Approaches

Task-Based	Updates

Since	reducers	are	just	functions,	there's	an	infinite	number	of	ways	to	split	up	this	logic.	While	using	slice	reducers	is
obviously	the	most	common,	it's	also	possible	to	organize	behavior	in	a	more	task-oriented	structure.	Because	this	will
often	involve	more	nested	updates,	you	may	want	to	use	an	immutable	update	utility	library	like	dot-prop-immutable	or
object-path-immutable	to	simplify	the	update	statements.	Here's	an	example	of	what	that	might	look	like:

import	posts	from	"./postsReducer";

import	comments	from	"./commentsReducer";

import	dotProp	from	"dot-prop-immutable";

import	{combineReducers}	from	"redux";

import	reduceReducers	from	"reduce-reducers";

const	combinedReducer	=	combineReducers({

				posts,

				comments

});

function	addComment(state,	action)	{

				const	{payload}	=	action;

				const	{postId,	commentId,	commentText}	=	payload;

				//	State	here	is	the	entire	combined	state

				const	updatedWithPostState	=	dotProp.set(

								state,

								`posts.byId.${postId}.comments`,

								comments	=>	comments.concat(commentId)

);

				const	updatedWithCommentsTable	=	dotProp.set(

								updatedWithPostState,

								`comments.byId.${commentId}`,

								{id	:	commentId,	text	:	commentText}

);

				const	updatedWithCommentsList	=	dotProp.set(

								updatedWithCommentsTable,

								`comments.allIds`,

								allIds	=>	allIds.concat(commentId);

);

				return	updatedWithCommentsList;

}

const	featureReducers	=	createReducer({},	{

				ADD_COMMENT	:	addComment,

};

const	rootReducer	=	reduceReducers(

				combinedReducer,

				featureReducers

);

Updating	Normalized	Data

191

https://github.com/debitoor/dot-prop-immutable
https://github.com/mariocasciaro/object-path-immutable

This	approach	makes	it	very	clear	what's	happening	for	the		"ADD_COMMENTS"		case,	but	it	does	require	nested	updating
logic,	and	some	specific	knowledge	of	the	state	tree	shape.	Depending	on	how	you	want	to	compose	your	reducer
logic,	this	may	or	may	not	be	desired.

Redux-ORM

The	Redux-ORM	library	provides	a	very	useful	abstraction	layer	for	managing	normalized	data	in	a	Redux	store.	It
allows	you	to	declare	Model	classes	and	define	relations	between	them.	It	can	then	generate	the	empty	"tables"	for
your	data	types,	act	as	a	specialized	selector	tool	for	looking	up	the	data,	and	perform	immutable	updates	on	that
data.

There's	a	couple	ways	Redux-ORM	can	be	used	to	perform	updates.	First,	the	Redux-ORM	docs	suggest	defining
reducer	functions	on	each	Model	subclass,	then	including	the	auto-generated	combined	reducer	function	into	your
store:

//	models.js

import	{	Model,	many,	Schema	}	from	'redux-orm'

export	class	Post	extends	Model	{

		static	get	fields()	{

				return	{

						//	Define	a	many-sided	relation	-	one	Post	can	have	many	Comments,

						//	at	a	field	named	"comments"

						comments:	many('Comment')

				}

		}

		static	reducer(state,	action,	Post)	{

				switch	(action.type)	{

						case	'CREATE_POST':	{

								//	Queue	up	the	creation	of	a	Post	instance

								Post.create(action.payload)

								break

						}

						case	'ADD_COMMENT':	{

								const	{	payload	}	=	action

								const	{	postId,	commentId	}	=	payload

								//	Queue	up	the	addition	of	a	relation	between	this	Comment	ID

								//	and	this	Post	instance

								Post.withId(postId).comments.add(commentId)

								break

						}

				}

				//	Redux-ORM	will	automatically	apply	queued	updates	after	this	returns

		}

}

Post.modelName	=	'Post'

export	class	Comment	extends	Model	{

		static	get	fields()	{

				return	{}

		}

		static	reducer(state,	action,	Comment)	{

				switch	(action.type)	{

						case	'ADD_COMMENT':	{

								const	{	payload	}	=	action

								const	{	commentId,	commentText	}	=	payload

								//	Queue	up	the	creation	of	a	Comment	instance

								Comment.create({	id:	commentId,	text:	commentText	})

								break

						}

				}

				//	Redux-ORM	will	automatically	apply	queued	updates	after	this	returns

		}

Updating	Normalized	Data

192

https://github.com/tommikaikkonen/redux-orm

}

Comment.modelName	=	'Comment'

//	Create	a	Schema	instance,	and	hook	up	the	Post	and	Comment	models

export	const	schema	=	new	Schema()

schema.register(Post,	Comment)

//	main.js

import	{	createStore,	combineReducers	}	from	'redux'

import	{	schema	}	from	'./models'

const	rootReducer	=	combineReducers({

		//	Insert	the	auto-generated	Redux-ORM	reducer.		This	will

		//	initialize	our	model	"tables",	and	hook	up	the	reducer

		//	logic	we	defined	on	each	Model	subclass

		entities:	schema.reducer()

})

//	Dispatch	an	action	to	create	a	Post	instance

store.dispatch({

		type:	'CREATE_POST',

		payload:	{

				id:	1,

				name:	'Test	Post	Please	Ignore'

		}

})

//	Dispatch	an	action	to	create	a	Comment	instance	as	a	child	of	that	Post

store.dispatch({

		type:	'ADD_COMMENT',

		payload:	{

				postId:	1,

				commentId:	123,

				commentText:	'This	is	a	comment'

		}

})

The	Redux-ORM	library	maintains	an	internal	queue	of	updates	to	be	applied.	Those	updates	are	then	applied
immutably,	simplifying	the	update	process.

Another	variation	on	this	is	to	use	Redux-ORM	as	an	abstraction	layer	within	a	single	case	reducer:

import	{	schema	}	from	'./models'

//	Assume	this	case	reducer	is	being	used	in	our	"entities"	slice	reducer,

//	and	we	do	not	have	reducers	defined	on	our	Redux-ORM	Model	subclasses

function	addComment(entitiesState,	action)	{

		const	session	=	schema.from(entitiesState)

		const	{	Post,	Comment	}	=	session

		const	{	payload	}	=	action

		const	{	postId,	commentId,	commentText	}	=	payload

		const	post	=	Post.withId(postId)

		post.comments.add(commentId)

		Comment.create({	id:	commentId,	text:	commentText	})

		return	session.reduce()

}

Overall,	Redux-ORM	provides	a	very	useful	set	of	abstractions	for	defining	relations	between	data	types,	creating	the
"tables"	in	our	state,	retrieving	and	denormalizing	relational	data,	and	applying	immutable	updates	to	relational	data.

Updating	Normalized	Data

193

Updating	Normalized	Data

194

Reusing	Reducer	Logic
As	an	application	grows,	common	patterns	in	reducer	logic	will	start	to	emerge.	You	may	find	several	parts	of	your
reducer	logic	doing	the	same	kinds	of	work	for	different	types	of	data,	and	want	to	reduce	duplication	by	reusing	the
same	common	logic	for	each	data	type.	Or,	you	may	want	to	have	multiple	"instances"	of	a	certain	type	of	data	being
handled	in	the	store.	However,	the	global	structure	of	a	Redux	store	comes	with	some	trade-offs:	it	makes	it	easy	to
track	the	overall	state	of	an	application,	but	can	also	make	it	harder	to	"target"	actions	that	need	to	update	a	specific
piece	of	state,	particularly	if	you	are	using		combineReducers	.

As	an	example,	let's	say	that	we	want	to	track	multiple	counters	in	our	application,	named	A,	B,	and	C.	We	define	our
initial		counter		reducer,	and	we	use		combineReducers		to	set	up	our	state:

function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

const	rootReducer	=	combineReducers({

		counterA:	counter,

		counterB:	counter,

		counterC:	counter

})

Unfortunately,	this	setup	has	a	problem.	Because		combineReducers		will	call	each	slice	reducer	with	the	same	action,
dispatching		{type	:	'INCREMENT'}		will	actually	cause	all	three	counter	values	to	be	incremented,	not	just	one	of	them.
We	need	some	way	to	wrap	the		counter		logic	so	that	we	can	ensure	that	only	the	counter	we	care	about	is	updated.

Customizing	Behavior	with	Higher-Order	Reducers
As	defined	in	Splitting	Reducer	Logic,	a	higher-order	reducer	is	a	function	that	takes	a	reducer	function	as	an
argument,	and/or	returns	a	new	reducer	function	as	a	result.	It	can	also	be	viewed	as	a	"reducer	factory".
	combineReducers		is	one	example	of	a	higher-order	reducer.	We	can	use	this	pattern	to	create	specialized	versions	of
our	own	reducer	functions,	with	each	version	only	responding	to	specific	actions.

The	two	most	common	ways	to	specialize	a	reducer	are	to	generate	new	action	constants	with	a	given	prefix	or	suffix,
or	to	attach	additional	info	inside	the	action	object.	Here's	what	those	might	look	like:

function	createCounterWithNamedType(counterName	=	'')	{

		return	function	counter(state	=	0,	action)	{

				switch	(action.type)	{

						case	`INCREMENT_${counterName}`:

								return	state	+	1

						case	`DECREMENT_${counterName}`:

								return	state	-	1

						default:

								return	state

				}

		}

}

function	createCounterWithNameData(counterName	=	'')	{

		return	function	counter(state	=	0,	action)	{

				const	{	name	}	=	action

Reusing	Reducer	Logic

195

				if	(name	!==	counterName)	return	state

				switch	(action.type)	{

						case	`INCREMENT`:

								return	state	+	1

						case	`DECREMENT`:

								return	state	-	1

						default:

								return	state

				}

		}

}

We	should	now	be	able	to	use	either	of	these	to	generate	our	specialized	counter	reducers,	and	then	dispatch	actions
that	will	affect	the	portion	of	the	state	that	we	care	about:

const	rootReducer	=	combineReducers({

		counterA:	createCounterWithNamedType('A'),

		counterB:	createCounterWithNamedType('B'),

		counterC:	createCounterWithNamedType('C')

})

store.dispatch({	type:	'INCREMENT_B'	})

console.log(store.getState())

//	{counterA	:	0,	counterB	:	1,	counterC	:	0}

We	could	also	vary	the	approach	somewhat,	and	create	a	more	generic	higher-order	reducer	that	accepts	both	a
given	reducer	function	and	a	name	or	identifier:

function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

function	createNamedWrapperReducer(reducerFunction,	reducerName)	{

		return	(state,	action)	=>	{

				const	{	name	}	=	action

				const	isInitializationCall	=	state	===	undefined

				if	(name	!==	reducerName	&&	!isInitializationCall)	return	state

				return	reducerFunction(state,	action)

		}

}

const	rootReducer	=	combineReducers({

		counterA:	createNamedWrapperReducer(counter,	'A'),

		counterB:	createNamedWrapperReducer(counter,	'B'),

		counterC:	createNamedWrapperReducer(counter,	'C')

})

You	could	even	go	as	far	as	to	make	a	generic	filtering	higher-order	reducer:

function	createFilteredReducer(reducerFunction,	reducerPredicate)	{

				return	(state,	action)	=>	{

								const	isInitializationCall	=	state	===	undefined;

								const	shouldRunWrappedReducer	=	reducerPredicate(action)	||	isInitializationCall;

								return	shouldRunWrappedReducer	?	reducerFunction(state,	action)	:	state;

				}

}

const	rootReducer	=	combineReducers({

				//	check	for	suffixed	strings

Reusing	Reducer	Logic

196

				counterA	:	createFilteredReducer(counter,	action	=>	action.type.endsWith('_A')),

				//	check	for	extra	data	in	the	action

				counterB	:	createFilteredReducer(counter,	action	=>	action.name	===	'B'),

				//	respond	to	all	'INCREMENT'	actions,	but	never	'DECREMENT'

				counterC	:	createFilteredReducer(counter,	action	=>	action.type	===	'INCREMENT')

};

These	basic	patterns	allow	you	to	do	things	like	having	multiple	instances	of	a	smart	connected	component	within	the
UI,	or	reuse	common	logic	for	generic	capabilities	such	as	pagination	or	sorting.

In	addition	to	generating	reducers	this	way,	you	might	also	want	to	generate	action	creators	using	the	same	approach,
and	could	generate	them	both	at	the	same	time	with	helper	functions.	See	Action/Reducer	Generators	and	Reducers
libraries	for	action/reducer	utilities.

Reusing	Reducer	Logic

197

https://github.com/markerikson/redux-ecosystem-links/blob/master/action-reducer-generators.md
https://github.com/markerikson/redux-ecosystem-links/blob/master/reducers.md

Immutable	Update	Patterns
The	articles	listed	in	Prerequisite	Concepts#Immutable	Data	Management	give	a	number	of	good	examples	for	how	to
perform	basic	update	operations	immutably,	such	as	updating	a	field	in	an	object	or	adding	an	item	to	the	end	of	an
array.	However,	reducers	will	often	need	to	use	those	basic	operations	in	combination	to	perform	more	complicated
tasks.	Here	are	some	examples	for	some	of	the	more	common	tasks	you	might	have	to	implement.

Updating	Nested	Objects
The	key	to	updating	nested	data	is	that	every	level	of	nesting	must	be	copied	and	updated	appropriately.	This	is
often	a	difficult	concept	for	those	learning	Redux,	and	there	are	some	specific	problems	that	frequently	occur	when
trying	to	update	nested	objects.	These	lead	to	accidental	direct	mutation,	and	should	be	avoided.

Common	Mistake	#1:	New	variables	that	point	to	the	same	objects

Defining	a	new	variable	does	not	create	a	new	actual	object	-	it	only	creates	another	reference	to	the	same	object.	An
example	of	this	error	would	be:

function	updateNestedState(state,	action)	{

		let	nestedState	=	state.nestedState

		//	ERROR:	this	directly	modifies	the	existing	object	reference	-	don't	do	this!

		nestedState.nestedField	=	action.data

		return	{

				...state,

				nestedState

		}

}

This	function	does	correctly	return	a	shallow	copy	of	the	top-level	state	object,	but	because	the		nestedState		variable
was	still	pointing	at	the	existing	object,	the	state	was	directly	mutated.

Common	Mistake	#2:	Only	making	a	shallow	copy	of	one	level

Another	common	version	of	this	error	looks	like	this:

function	updateNestedState(state,	action)	{

		//	Problem:	this	only	does	a	shallow	copy!

		let	newState	=	{	...state	}

		//	ERROR:	nestedState	is	still	the	same	object!

		newState.nestedState.nestedField	=	action.data

		return	newState

}

Doing	a	shallow	copy	of	the	top	level	is	not	sufficient	-	the		nestedState		object	should	be	copied	as	well.

Correct	Approach:	Copying	All	Levels	of	Nested	Data

Unfortunately,	the	process	of	correctly	applying	immutable	updates	to	deeply	nested	state	can	easily	become	verbose
and	hard	to	read.	Here's	what	an	example	of	updating		state.first.second[someId].fourth		might	look	like:

function	updateVeryNestedField(state,	action)	{

		return	{

				...state,

				first:	{

Immutable	Update	Patterns

198

						...state.first,

						second:	{

								...state.first.second,

								[action.someId]:	{

										...state.first.second[action.someId],

										fourth:	action.someValue

								}

						}

				}

		}

}

Obviously,	each	layer	of	nesting	makes	this	harder	to	read,	and	gives	more	chances	to	make	mistakes.	This	is	one	of
several	reasons	why	you	are	encouraged	to	keep	your	state	flattened,	and	compose	reducers	as	much	as	possible.

Inserting	and	Removing	Items	in	Arrays
Normally,	a	Javascript	array's	contents	are	modified	using	mutative	functions	like		push	,		unshift	,	and		splice	.
Since	we	don't	want	to	mutate	state	directly	in	reducers,	those	should	normally	be	avoided.	Because	of	that,	you	might
see	"insert"	or	"remove"	behavior	written	like	this:

function	insertItem(array,	action)	{

		return	[

				...array.slice(0,	action.index),

				action.item,

				...array.slice(action.index)

]

}

function	removeItem(array,	action)	{

		return	[...array.slice(0,	action.index),	...array.slice(action.index	+	1)]

}

However,	remember	that	the	key	is	that	the	original	in-memory	reference	is	not	modified.	As	long	as	we	make	a
copy	first,	we	can	safely	mutate	the	copy.	Note	that	this	is	true	for	both	arrays	and	objects,	but	nested	values	still
must	be	updated	using	the	same	rules.

This	means	that	we	could	also	write	the	insert	and	remove	functions	like	this:

function	insertItem(array,	action)	{

		let	newArray	=	array.slice()

		newArray.splice(action.index,	0,	action.item)

		return	newArray

}

function	removeItem(array,	action)	{

		let	newArray	=	array.slice()

		newArray.splice(action.index,	1)

		return	newArray

}

The	remove	function	could	also	be	implemented	as:

function	removeItem(array,	action)	{

		return	array.filter((item,	index)	=>	index	!==	action.index)

}

Updating	an	Item	in	an	Array

Immutable	Update	Patterns

199

Updating	one	item	in	an	array	can	be	accomplished	by	using		Array.map	,	returning	a	new	value	for	the	item	we	want
to	update,	and	returning	the	existing	values	for	all	other	items:

function	updateObjectInArray(array,	action)	{

		return	array.map((item,	index)	=>	{

				if	(index	!==	action.index)	{

						//	This	isn't	the	item	we	care	about	-	keep	it	as-is

						return	item

				}

				//	Otherwise,	this	is	the	one	we	want	-	return	an	updated	value

				return	{

						...item,

						...action.item

				}

		})

}

Immutable	Update	Utility	Libraries
Because	writing	immutable	update	code	can	become	tedious,	there	are	a	number	of	utility	libraries	that	try	to	abstract
out	the	process.	These	libraries	vary	in	APIs	and	usage,	but	all	try	to	provide	a	shorter	and	more	succinct	way	of
writing	these	updates.	For	example,	Immer	makes	immutable	updates	a	simple	function	and	plain	JavaScript	objects:

var	usersState	=	[{	name:	'John	Doe',	address:	{	city:	'London'	}	}]

var	newState	=	immer.produce(usersState,	draftState	=>	{

		draftState[0].name	=	'Jon	Doe'

		draftState[0].address.city	=	'Paris'

		//nested	update	similar	to	mutable	way

})

Some,	like	dot-prop-immutable,	take	string	paths	for	commands:

state	=	dotProp.set(state,	`todos.${index}.complete`,	true)

Others,	like	immutability-helper	(a	fork	of	the	now-deprecated	React	Immutability	Helpers	addon),	use	nested	values
and	helper	functions:

var	collection	=	[1,	2,	{	a:	[12,	17,	15]	}]

var	newCollection	=	update(collection,	{

		2:	{	a:	{	$splice:	[[1,	1,	13,	14]]	}	}

})

They	can	provide	a	useful	alternative	to	writing	manual	immutable	update	logic.

A	list	of	many	immutable	update	utilities	can	be	found	in	the	Immutable	Data#Immutable	Update	Utilities	section	of	the
Redux	Addons	Catalog.

Immutable	Update	Patterns

200

https://github.com/mweststrate/immer
https://github.com/debitoor/dot-prop-immutable
https://github.com/kolodny/immutability-helper
https://github.com/markerikson/redux-ecosystem-links/blob/master/immutable-data.md#immutable-update-utilities
https://github.com/markerikson/redux-ecosystem-links

Initializing	State
There	are	two	main	ways	to	initialize	state	for	your	application.	The		createStore		method	can	accept	an	optional
	preloadedState		value	as	its	second	argument.	Reducers	can	also	specify	an	initial	value	by	looking	for	an	incoming
state	argument	that	is		undefined	,	and	returning	the	value	they'd	like	to	use	as	a	default.	This	can	either	be	done	with
an	explicit	check	inside	the	reducer,	or	by	using	the	ES6	default	argument	value	syntax:		function	myReducer(state	=
someDefaultValue,	action)	.

It's	not	always	immediately	clear	how	these	two	approaches	interact.	Fortunately,	the	process	does	follow	some
predictable	rules.	Here's	how	the	pieces	fit	together.

Summary
Without		combineReducers()		or	similar	manual	code,		preloadedState		always	wins	over		state	=	...		in	the	reducer
because	the		state		passed	to	the	reducer	is		preloadedState		and	is	not		undefined	,	so	the	ES6	argument	syntax
doesn't	apply.

With		combineReducers()		the	behavior	is	more	nuanced.	Those	reducers	whose	state	is	specified	in		preloadedState	
will	receive	that	state.	Other	reducers	will	receive		undefined		and	because	of	that	will	fall	back	to	the		state	=	...	
default	argument	they	specify.

In	general,		preloadedState		wins	over	the	state	specified	by	the	reducer.	This	lets	reducers	specify	initial	data
that	makes	sense	to	them	as	default	arguments,	but	also	allows	loading	existing	data	(fully	or	partially)	when
you're	hydrating	the	store	from	some	persistent	storage	or	the	server.

Note:	Reducers	whose	initial	state	is	populated	using		preloadedState		will	still	need	to	provide	a	default	value	to
handle	when	passed	a		state		of		undefined	.	All	reducers	are	passed		undefined		on	initialization,	so	they	should	be
written	such	that	when	given		undefined	,	some	value	should	be	returned.	This	can	be	any	non-	undefined		value;
there's	no	need	to	duplicate	the	section	of		preloadedState		here	as	the	default.

In	Depth

Single	Simple	Reducer

First	let's	consider	a	case	where	you	have	a	single	reducer.	Say	you	don't	use		combineReducers()	.

Then	your	reducer	might	look	like	this:

function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

Now	let's	say	you	create	a	store	with	it.

import	{	createStore	}	from	'redux'

const	store	=	createStore(counter)

console.log(store.getState())	//	0

Initializing	State

201

The	initial	state	is	zero.	Why?	Because	the	second	argument	to		createStore		was		undefined	.	This	is	the		state	
passed	to	your	reducer	the	first	time.	When	Redux	initializes	it	dispatches	a	"dummy"	action	to	fill	the	state.	So	your
	counter		reducer	was	called	with		state		equal	to		undefined	.	This	is	exactly	the	case	that	"activates"	the	default
argument.	Therefore,		state		is	now		0		as	per	the	default		state		value	(state	=	0).	This	state	(0)	will	be
returned.

Let's	consider	a	different	scenario:

import	{	createStore	}	from	'redux'

const	store	=	createStore(counter,	42)

console.log(store.getState())	//	42

Why	is	it		42	,	and	not		0	,	this	time?	Because		createStore		was	called	with		42		as	the	second	argument.	This
argument	becomes	the		state		passed	to	your	reducer	along	with	the	dummy	action.	This	time,		state		is	not
undefined	(it's		42	!),	so	ES6	default	argument	syntax	has	no	effect.	The		state		is		42	,	and		42		is	returned	from
the	reducer.

Combined	Reducers

Now	let's	consider	a	case	where	you	use		combineReducers()	.
You	have	two	reducers:

function	a(state	=	'lol',	action)	{

		return	state

}

function	b(state	=	'wat',	action)	{

		return	state

}

The	reducer	generated	by		combineReducers({	a,	b	})		looks	like	this:

//	const	combined	=	combineReducers({	a,	b	})

function	combined(state	=	{},	action)	{

		return	{

				a:	a(state.a,	action),

				b:	b(state.b,	action)

		}

}

If	we	call		createStore		without	the		preloadedState	,	it's	going	to	initialize	the		state		to		{}	.	Therefore,		state.a		and
	state.b		will	be		undefined		by	the	time	it	calls		a		and		b		reducers.	Both		a		and		b		reducers	will	receive
	undefined		as	their		state		arguments,	and	if	they	specify	default		state		values,	those	will	be	returned.	This	is
how	the	combined	reducer	returns	a		{	a:	'lol',	b:	'wat'	}		state	object	on	the	first	invocation.

import	{	createStore	}	from	'redux'

const	store	=	createStore(combined)

console.log(store.getState())	//	{	a:	'lol',	b:	'wat'	}

Let's	consider	a	different	scenario:

import	{	createStore	}	from	'redux'

const	store	=	createStore(combined,	{	a:	'horse'	})

console.log(store.getState())	//	{	a:	'horse',	b:	'wat'	}

Initializing	State

202

Now	I	specified	the		preloadedState		as	the	argument	to		createStore()	.	The	state	returned	from	the	combined
reducer	combines	the	initial	state	I	specified	for	the		a		reducer	with	the		'wat'		default	argument	specified	that		b	
reducer	chose	itself.

Let's	recall	what	the	combined	reducer	does:

//	const	combined	=	combineReducers({	a,	b	})

function	combined(state	=	{},	action)	{

		return	{

				a:	a(state.a,	action),

				b:	b(state.b,	action)

		}

}

In	this	case,		state		was	specified	so	it	didn't	fall	back	to		{}	.	It	was	an	object	with		a		field	equal	to		'horse'	,	but
without	the		b		field.	This	is	why	the		a		reducer	received		'horse'		as	its		state		and	gladly	returned	it,	but	the		b	
reducer	received		undefined		as	its		state		and	thus	returned	its	idea	of	the	default		state		(in	our	example,		'wat').
This	is	how	we	get		{	a:	'horse',	b:	'wat'	}		in	return.

Recap
To	sum	this	up,	if	you	stick	to	Redux	conventions	and	return	the	initial	state	from	reducers	when	they're	called	with
	undefined		as	the		state		argument	(the	easiest	way	to	implement	this	is	to	specify	the		state		ES6	default	argument
value),	you're	going	to	have	a	nice	useful	behavior	for	combined	reducers.	They	will	prefer	the	corresponding	value
in	the		preloadedState		object	you	pass	to	the		createStore()		function,	but	if	you	didn't	pass	any,	or	if	the
corresponding	field	is	not	set,	the	default		state		argument	specified	by	the	reducer	is	chosen	instead.	This
approach	works	well	because	it	provides	both	initialization	and	hydration	of	existing	data,	but	lets	individual	reducers
reset	their	state	if	their	data	was	not	preserved.	Of	course	you	can	apply	this	pattern	recursively,	as	you	can	use
	combineReducers()		on	many	levels,	or	even	compose	reducers	manually	by	calling	reducers	and	giving	them	the
relevant	part	of	the	state	tree.

Initializing	State

203

Using	Immutable.JS	with	Redux

Table	of	Contents
Why	should	I	use	an	immutable-focused	library	such	as	Immutable.JS?
Why	should	I	choose	Immutable.JS	as	an	immutable	library?
What	are	the	issues	with	using	Immutable.JS?
Is	Immutable.JS	worth	the	effort?
What	are	some	opinionated	Best	Practices	for	using	Immutable.JS	with	Redux?

Why	should	I	use	an	immutable-focused	library	such	as
Immutable.JS?
Immutable-focused	libraries	such	as	Immutable.JS	have	been	designed	to	overcome	the	issues	with	immutability
inherent	within	JavaScript,	providing	all	the	benefits	of	immutability	with	the	performance	your	app	requires.

Whether	you	choose	to	use	such	a	library,	or	stick	with	plain	JavaScript,	depends	on	how	comfortable	you	are	with
adding	another	dependency	to	your	app,	or	how	sure	you	are	that	you	can	avoid	the	pitfalls	inherent	within
JavaScript’s	approach	to	immutability.

Whichever	option	you	choose,	make	sure	you’re	familiar	with	the	concepts	of	immutability,	side	effects	and	mutation.
In	particular,	ensure	you	have	a	deep	understanding	of	what	JavaScript	does	when	updating	and	copying	values	in
order	to	guard	against	accidental	mutations	that	will	degrade	your	app’s	performance,	or	break	it	altogether.

Further	Information

Documentation

Recipes:	immutability,	side	effects	and	mutation

Articles

Introduction	to	Immutable.js	and	Functional	Programming	Concepts
Pros	and	Cons	of	using	immutability	with	React.js

Why	should	I	choose	Immutable.JS	as	an	immutable
library?
Immutable.JS	was	designed	to	provide	immutability	in	a	performant	manner	in	an	effort	to	overcome	the	limitations	of
immutability	with	JavaScript.	Its	principle	advantages	include:

Guaranteed	immutability

Data	encapsulated	in	an	Immutable.JS	object	is	never	mutated.	A	new	copy	is	always	returned.	This	contrasts	with
JavaScript,	in	which	some	operations	do	not	mutate	your	data	(e.g.	some	Array	methods,	including	map,	filter,	concat,
forEach,	etc.),	but	some	do	(Array’s	pop,	push,	splice,	etc.).

Rich	API

Using	Immutable.JS	with	Redux

204

https://auth0.com/blog/intro-to-immutable-js/
http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/

Immutable.JS	provides	a	rich	set	of	immutable	objects	to	encapsulate	your	data	(e.g.	Maps,	Lists,	Sets,	Records,
etc.),	and	an	extensive	set	of	methods	to	manipulate	it,	including	methods	to	sort,	filter,	and	group	the	data,	reverse	it,
flatten	it,	and	create	subsets.

Performance

Immutable.JS	does	a	lot	of	work	behind	the	scenes	to	optimize	performance.	This	is	the	key	to	its	power,	as	using
immutable	data	structures	can	involve	a	lot	of	expensive	copying.	In	particular,	immutably	manipulating	large,	complex
data	sets,	such	as	a	nested	Redux	state	tree,	can	generate	many	intermediate	copies	of	objects,	which	consume
memory	and	slow	down	performance	as	the	browser’s	garbage	collector	fights	to	clean	things	up.

Immutable.JS	avoids	this	by	cleverly	sharing	data	structures	under	the	surface,	minimizing	the	need	to	copy	data.	It
also	enables	complex	chains	of	operations	to	be	carried	out	without	creating	unnecessary	(and	costly)	cloned
intermediate	data	that	will	quickly	be	thrown	away.

You	never	see	this,	of	course	-	the	data	you	give	to	an	Immutable.JS	object	is	never	mutated.	Rather,	it’s	the
intermediate	data	generated	within	Immutable.JS	from	a	chained	sequence	of	method	calls	that	is	free	to	be	mutated.
You	therefore	get	all	the	benefits	of	immutable	data	structures	with	none	(or	very	little)	of	the	potential	performance
hits.

Further	Information

Articles

Immutable.js,	persistent	data	structures	and	structural	sharing
PDF:	JavaScript	Immutability	-	Don’t	go	changing

Libraries

Immutable.js

What	are	the	issues	with	using	Immutable.JS?
Although	powerful,	Immutable.JS	needs	to	be	used	carefully,	as	it	comes	with	issues	of	its	own.	Note,	however,	that
all	of	these	issues	can	be	overcome	quite	easily	with	careful	coding.

Difficult	to	interoperate	with

JavaScript	does	not	provide	immutable	data	structures.	As	such,	for	Immutable.JS	to	provide	its	immutable
guarantees,	your	data	must	be	encapsulated	within	an	Immutable.JS	object	(such	as	a		Map		or	a		List	,	etc.).	Once
it’s	contained	in	this	way,	it’s	hard	for	that	data	to	then	interoperate	with	other,	plain	JavaScript	objects.

For	example,	you	will	no	longer	be	able	to	reference	an	object’s	properties	through	standard	JavaScript	dot	or	bracket
notation.	Instead,	you	must	reference	them	via	Immutable.JS’s		get()		or		getIn()		methods,	which	use	an	awkward
syntax	that	accesses	properties	via	an	array	of	strings,	each	of	which	represents	a	property	key.

For	example,	instead	of		myObj.prop1.prop2.prop3	,	you	would	use		myImmutableMap.getIn([‘prop1’,	‘prop2’,
‘prop3’])	.

This	makes	it	awkward	to	interoperate	not	just	with	your	own	code,	but	also	with	other	libraries,	such	as	lodash	or
ramda,	that	expect	plain	JavaScript	objects.

Note	that	Immutable.JS	objects	do	have	a		toJS()		method,	which	returns	the	data	as	a	plain	JavaScript	data
structure,	but	this	method	is	extremely	slow,	and	using	it	extensively	will	negate	the	performance	benefits	that
Immutable.JS	provides

Using	Immutable.JS	with	Redux

205

https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.z1g1ofrsi
https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.6nwctunlc
https://www.jfokus.se/jfokus16/preso/JavaScript-Immutability--Dont-Go-Changing.pdf
https://facebook.github.io/immutable-js/

Once	used,	Immutable.JS	will	spread	throughout	your	codebase

Once	you	encapsulate	your	data	with	Immutable.JS,	you	have	to	use	Immutable.JS’s		get()		or		getIn()		property
accessors	to	access	it.

This	has	the	effect	of	spreading	Immutable.JS	across	your	entire	codebase,	including	potentially	your	components,
where	you	may	prefer	not	to	have	such	external	dependencies.	Your	entire	codebase	must	know	what	is,	and	what	is
not,	an	Immutable.JS	object.	It	also	makes	removing	Immutable.JS	from	your	app	difficult	in	the	future,	should	you
ever	need	to.

This	issue	can	be	avoided	by	uncoupling	your	application	logic	from	your	data	structures,	as	outlined	in	the	best
practices	section	below.

No	Destructuring	or	Spread	Operators

Because	you	must	access	your	data	via	Immutable.JS’s	own		get()		and		getIn()		methods,	you	can	no	longer	use
JavaScript’s	destructuring	operator	(or	the	proposed	Object	spread	operator),	making	your	code	more	verbose.

Not	suitable	for	small	values	that	change	often

Immutable.JS	works	best	for	collections	of	data,	and	the	larger	the	better.	It	can	be	slow	when	your	data	comprises
lots	of	small,	simple	JavaScript	objects,	with	each	comprising	a	few	keys	of	primitive	values.

Note,	however,	that	this	does	not	apply	to	the	Redux	state	tree,	which	is	(usually)	represented	as	a	large	collection	of
data.

Difficult	to	Debug

Immutable.JS	objects,	such	as		Map	,		List	,	etc.,	can	be	difficult	to	debug,	as	inspecting	such	an	object	will	reveal	an
entire	nested	hierarchy	of	Immutable.JS-specific	properties	that	you	don’t	care	about,	while	your	actual	data	that	you
do	care	about	is	encapsulated	several	layers	deep.

To	resolve	this	issue,	use	a	browser	extension	such	as	the	Immutable.js	Object	Formatter,	which	surfaces	your	data
in	Chrome	Dev	Tools,	and	hides	Immutable.JS’s	properties	when	inspecting	your	data.

Breaks	object	references,	causing	poor	performance

One	of	the	key	advantages	of	immutability	is	that	it	enables	shallow	equality	checking,	which	dramatically	improves
performance.

If	two	different	variables	reference	the	same	immutable	object,	then	a	simple	equality	check	of	the	two	variables	is
enough	to	determine	that	they	are	equal,	and	that	the	object	they	both	reference	is	unchanged.	The	equality	check
never	has	to	check	the	values	of	any	of	the	object’s	properties,	as	it	is,	of	course,	immutable.

However,	shallow	checking	will	not	work	if	your	data	encapsulated	within	an	Immutable.JS	object	is	itself	an	object.
This	is	because	Immutable.JS’s		toJS()		method,	which	returns	the	data	contained	within	an	Immutable.JS	object	as	a
JavaScript	value,	will	create	a	new	object	every	time	it’s	called,	and	so	break	the	reference	with	the	encapsulated
data.

Accordingly,	calling		toJS()		twice,	for	example,	and	assigning	the	result	to	two	different	variables	will	cause	an
equality	check	on	those	two	variables	to	fail,	even	though	the	object	values	themselves	haven’t	changed.

This	is	a	particular	issue	if	you	use		toJS()		in	a	wrapped	component’s		mapStateToProps		function,	as	React-Redux
shallowly	compares	each	value	in	the	returned	props	object.	For	example,	the	value	referenced	by	the		todos		prop
returned	from		mapStateToProps		below	will	always	be	a	different	object,	and	so	will	fail	a	shallow	equality	check.

Using	Immutable.JS	with	Redux

206

https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.z1g1ofrsi
https://chrome.google.com/webstore/detail/immutablejs-object-format/hgldghadipiblonfkkicmgcbbijnpeog

//	AVOID	.toJS()	in	mapStateToProps

function	mapStateToProps(state)	{

		return	{

				todos:	state.get('todos').toJS()	//	Always	a	new	object

		}

}

When	the	shallow	check	fails,	React-Redux	will	cause	the	component	to	re-render.	Using		toJS()		in		mapStateToProps	
in	this	way,	therefore,	will	always	cause	the	component	to	re-render,	even	if	the	value	never	changes,	impacting
heavily	on	performance.

This	can	be	prevented	by	using		toJS()		in	a	Higher	Order	Component,	as	discussed	in	the	Best	Practices	section
below.

Further	Information

Articles

Immutable.js,	persistent	data	structures	and	structural	sharing
Immutable	Data	Structures	and	JavaScript
React.js	pure	render	performance	anti-pattern
Building	Efficient	UI	with	React	and	Redux

Chrome	Extension

Immutable	Object	Formatter

Is	Using	Immutable.JS	worth	the	effort?
Frequently,	yes.	There	are	various	tradeoffs	and	opinions	to	consider,	but	there	are	many	good	reasons	to	use
Immutable.JS.	Do	not	underestimate	the	difficulty	of	trying	to	track	down	a	property	of	your	state	tree	that	has	been
inadvertently	mutated.

Components	will	both	re-render	when	they	shouldn’t,	and	refuse	to	render	when	they	should,	and	tracking	down	the
bug	causing	the	rendering	issue	is	hard,	as	the	component	rendering	incorrectly	is	not	necessarily	the	one	whose
properties	are	being	accidentally	mutated.

This	problem	is	caused	predominantly	by	returning	a	mutated	state	object	from	a	Redux	reducer.	With	Immutable.JS,
this	problem	simply	does	not	exist,	thereby	removing	a	whole	class	of	bugs	from	your	app.

This,	together	with	its	performance	and	rich	API	for	data	manipulation,	is	why	Immutable.JS	is	worth	the	effort.

Further	Information

Documentation

Troubleshooting:	Nothing	happens	when	I	dispatch	an	action

What	are	some	opinionated	Best	Practices	for	using
Immutable.JS	with	Redux?
Immutable.JS	can	provide	significant	reliability	and	performance	improvements	to	your	app,	but	it	must	be	used
correctly.	If	you	choose	to	use	Immutable.JS	(and	remember,	you	are	not	required	to,	and	there	are	other	immutable
libraries	you	can	use),	follow	these	opinionated	best	practices,	and	you’ll	be	able	to	get	the	most	out	of	it,	without
tripping	up	on	any	of	the	issues	it	can	potentially	cause.

Using	Immutable.JS	with	Redux

207

https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.hzgz7ghbe
http://jlongster.com/Using-Immutable-Data-Structures-in-JavaScript
https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f#.9ucv6hwk4
https://www.toptal.com/react/react-redux-and-immutablejs
https://chrome.google.com/webstore/detail/immutablejs-object-format/hgldghadipiblonfkkicmgcbbijnpeog

Never	mix	plain	JavaScript	objects	with	Immutable.JS

Never	let	a	plain	JavaScript	object	contain	Immutable.JS	properties.	Equally,	never	let	an	Immutable.JS	object	contain
a	plain	JavaScript	object.

Further	Information

Articles

Immutable	Data	Structures	and	JavaScript

Make	your	entire	Redux	state	tree	an	Immutable.JS	object

For	a	Redux	app,	your	entire	state	tree	should	be	an	Immutable.JS	object,	with	no	plain	JavaScript	objects	used	at	all.

Create	the	tree	using	Immutable.JS’s		fromJS()		function.

Use	an	Immutable.JS-aware	version	of	the		combineReducers		function,	such	as	the	one	in	redux-immutable,	as
Redux	itself	expects	the	state	tree	to	be	a	plain	JavaScript	object.

When	adding	JavaScript	objects	to	an	Immutable.JS	Map	or	List	using	Immutable.JS’s		update	,		merge		or		set	
methods,	ensure	that	the	object	being	added	is	first	converted	to	an	Immutable	object	using		fromJS()	.

Example

//	avoid

const	newObj	=	{	key:	value	}

const	newState	=	state.setIn(['prop1'],	newObj)

//	newObj	has	been	added	as	a	plain	JavaScript	object,	NOT	as	an	Immutable.JS	Map

//	recommended

const	newObj	=	{	key:	value	}

const	newState	=	state.setIn(['prop1'],	fromJS(newObj))

//	newObj	is	now	an	Immutable.JS	Map

Further	Information

Articles

Immutable	Data	Structures	and	JavaScript

Libraries

redux-immutable

Use	Immutable.JS	everywhere	except	your	dumb	components

Using	Immutable.JS	everywhere	keeps	your	code	performant.	Use	it	in	your	smart	components,	your	selectors,	your
sagas	or	thunks,	action	creators,	and	especially	your	reducers.

Do	not,	however,	use	Immutable.JS	in	your	dumb	components.

Further	Information

Articles

Immutable	Data	Structures	and	JavaScript
Smart	and	Dumb	Components	in	React

Using	Immutable.JS	with	Redux

208

http://jlongster.com/Using-Immutable-Data-Structures-in-JavaScript
https://www.npmjs.com/package/redux-immutable
http://jlongster.com/Using-Immutable-Data-Structures-in-JavaScript
https://www.npmjs.com/package/redux-immutable
http://jlongster.com/Using-Immutable-Data-Structures-in-JavaScript
http://jaketrent.com/post/smart-dumb-components-react/

Limit	your	use	of		toJS()	

	toJS()		is	an	expensive	function	and	negates	the	purpose	of	using	Immutable.JS.	Avoid	its	use.

Further	Information

Discussions

Lee	Byron	on	Twitter:	“Perf	tip	for	#immutablejs…”

Your	selectors	should	return	Immutable.JS	objects

Always.	This	practice	has	several	advantages:

It	avoids	unnecessary	rerenders	caused	by	calling		.toJS()		in	selectors	(since		.toJS()		will	always	return	a	new
object).

It	is	possible	to	memoize	selectors	where	you	call		.toJS()	,	but	it’s	redundant	when	just	returning
Immutable.js	objects	without	memoizing	will	suffice.

It	establishes	a	consistent	interface	for	selectors;	you	won’t	have	to	keep	track	of	whether	an	Immutable.js	object
or	plain	JavaScript	object	will	be	returned.

Use	Immutable.JS	objects	in	your	Smart	Components

Smart	components	that	access	the	store	via	React	Redux’s		connect		function	must	use	the	Immutable.JS	values
returned	by	your	selectors.	Make	sure	you	avoid	the	potential	issues	this	can	cause	with	unnecessary	component	re-
rendering.	Memoize	your	selectors	using	a	library	such	as	reselect	if	necessary.

Further	Information

Documentation

Recipes:	Computing	Derived	Data
FAQ:	Immutable	Data
Reselect	Documentation:	How	do	I	use	Reselect	with	Immutable.js?

Articles

Redux	Patterns	and	Anti-Patterns

Libraries

Reselect:	Selector	library	for	Redux

Never	use		toJS()		in		mapStateToProps	

Converting	an	Immutable.JS	object	to	a	JavaScript	object	using		toJS()		will	return	a	new	object	every	time.	If	you	do
this	in		mapStateToProps	,	you	will	cause	the	component	to	believe	that	the	object	has	changed	every	time	the	state
tree	changes,	and	so	trigger	an	unnecessary	re-render.

Further	Information

Documentation

FAQ:	Immutable	Data

Using	Immutable.JS	with	Redux

209

https://twitter.com/leeb/status/746733697093668864
https://github.com/reduxjs/reselect/#q-how-do-i-use-reselect-with-immutablejs
https://tech.affirm.com/redux-patterns-and-anti-patterns-7d80ef3d53bc#.451p9ycfy
https://github.com/reduxjs/reselect

Never	use	Immutable.JS	in	your	Dumb	Components

Your	dumb	components	should	be	pure;	that	is,	they	should	produce	the	same	output	given	the	same	input,	and	have
no	external	dependencies.	If	you	pass	such	a	component	an	Immutable.JS	object	as	a	prop,	you	make	it	dependent
upon	Immutable.JS	to	extract	the	prop’s	value	and	otherwise	manipulate	it.

Such	a	dependency	renders	the	component	impure,	makes	testing	the	component	more	difficult,	and	makes	reusing
and	refactoring	the	component	unnecessarily	difficult.

Further	Information

Articles

Immutable	Data	Structures	and	JavaScript
Smart	and	Dumb	Components	in	React
Tips	For	a	Better	Redux	Architecture:	Lessons	for	Enterprise	Scale

Use	a	Higher	Order	Component	to	convert	your	Smart	Component’s
Immutable.JS	props	to	your	Dumb	Component’s	JavaScript	props

Something	needs	to	map	the	Immutable.JS	props	in	your	Smart	Component	to	the	pure	JavaScript	props	used	in	your
Dumb	Component.	That	something	is	a	Higher	Order	Component	(HOC)	that	simply	takes	the	Immutable.JS	props
from	your	Smart	Component,	and	converts	them	using		toJS()		to	plain	JavaScript	props,	which	are	then	passed	to
your	Dumb	Component.

An	example	of	such	a	HOC	follows.	A	similar	HOC	is	available	as	an	NPM	package	for	your	convenience:	with-
immutable-props-to-js.

import	React	from	'react'

import	{	Iterable	}	from	'immutable'

export	const	toJS	=	WrappedComponent	=>	wrappedComponentProps	=>	{

		const	KEY	=	0

		const	VALUE	=	1

		const	propsJS	=	Object.entries(wrappedComponentProps).reduce(

				(newProps,	wrappedComponentProp)	=>	{

						newProps[wrappedComponentProp[KEY]]	=	Iterable.isIterable(

								wrappedComponentProp[VALUE]

)

								?	wrappedComponentProp[VALUE].toJS()

								:	wrappedComponentProp[VALUE]

						return	newProps

				},

				{}

)

		return	<WrappedComponent	{...propsJS}	/>

}

And	this	is	how	you	would	use	it	in	your	Smart	Component:

import	{	connect	}	from	'react-redux'

import	{	toJS	}	from	'./to-js'

import	DumbComponent	from	'./dumb.component'

const	mapStateToProps	=	state	=>	{

		return	{

				//	obj	is	an	Immutable	object	in	Smart	Component,	but	it’s	converted	to	a	plain

				//	JavaScript	object	by	toJS,	and	so	passed	to	DumbComponent	as	a	pure	JavaScript

				//	object.	Because	it’s	still	an	Immutable.JS	object	here	in	mapStateToProps,	though,

Using	Immutable.JS	with	Redux

210

http://jlongster.com/Using-Immutable-Data-Structures-in-JavaScript
http://jaketrent.com/post/smart-dumb-components-react/
https://hashnode.com/post/tips-for-a-better-redux-architecture-lessons-for-enterprise-scale-civrlqhuy0keqc6539boivk2f
https://www.npmjs.com/package/with-immutable-props-to-js

				//	there	is	no	issue	with	errant	re-renderings.

				obj:	getImmutableObjectFromStateTree(state)

		}

}

export	default	connect(mapStateToProps)(toJS(DumbComponent))

By	converting	Immutable.JS	objects	to	plain	JavaScript	values	within	a	HOC,	we	achieve	Dumb	Component
portability,	but	without	the	performance	hits	of	using		toJS()		in	the	Smart	Component.

Note:	if	your	app	requires	high	performance,	you	may	need	to	avoid		toJS()		altogether,	and	so	will	have	to	use
Immutable.JS	in	your	dumb	components.	However,	for	most	apps	this	will	not	be	the	case,	and	the	benefits	of	keeping
Immutable.JS	out	of	your	dumb	components	(maintainability,	portability	and	easier	testing)	will	far	outweigh	any
perceived	performance	improvements	of	keeping	it	in.

In	addition,	using		toJS		in	a	Higher	Order	Component	should	not	cause	much,	if	any,	performance	degradation,	as
the	component	will	only	be	called	when	the	connected	component’s	props	change.	As	with	any	performance	issue,
conduct	performance	checks	first	before	deciding	what	to	optimize.

Further	Information

Documentation

React:	Higher-Order	Components

Articles

React	Higher	Order	Components	in	depth

Discussions

Reddit:	acemarke	and	cpsubrian	comments	on	Dan	Abramov:	Redux	is	not	an	architecture	or	design	pattern,	it	is
just	a	library.

Gists

cpsubrian:	React	decorators	for	redux/react-router/immutable	‘smart’	components

Use	the	Immutable	Object	Formatter	Chrome	Extension	to	Aid	Debugging

Install	the	Immutable	Object	Formatter	,	and	inspect	your	Immutable.JS	data	without	seeing	the	noise	of
Immutable.JS's	own	object	properties.

Further	Information

Chrome	Extension

Immutable	Object	Formatter

Using	Immutable.JS	with	Redux

211

https://facebook.github.io/react/docs/higher-order-components.html
https://medium.com/@franleplant/react-higher-order-components-in-depth-cf9032ee6c3e#.dw2qd1o1g
https://www.reddit.com/r/javascript/comments/4rcqpx/dan_abramov_redux_is_not_an_architecture_or/d5rw0p9/?context=3
https://gist.github.com/cpsubrian/79e97b6116ab68bd189eb4917203242c#file-tojs-js
https://chrome.google.com/webstore/detail/immutablejs-object-format/hgldghadipiblonfkkicmgcbbijnpeog
https://chrome.google.com/webstore/detail/immutablejs-object-format/hgldghadipiblonfkkicmgcbbijnpeog

Redux	FAQ

Table	of	Contents
General

When	should	I	learn	Redux?
When	should	I	use	Redux?
Can	Redux	only	be	used	with	React?
Do	I	need	to	have	a	particular	build	tool	to	use	Redux?

Reducers
How	do	I	share	state	between	two	reducers?	Do	I	have	to	use	combineReducers?
Do	I	have	to	use	the	switch	statement	to	handle	actions?

Organizing	State
Do	I	have	to	put	all	my	state	into	Redux?	Should	I	ever	use	React's	setState()?
Can	I	put	functions,	promises,	or	other	non-serializable	items	in	my	store	state?
How	do	I	organize	nested	or	duplicate	data	in	my	state?
Should	I	put	form	state	or	other	UI	state	in	my	store?

Store	Setup
Can	or	should	I	create	multiple	stores?	Can	I	import	my	store	directly,	and	use	it	in	components	myself?
Is	it	OK	to	have	more	than	one	middleware	chain	in	my	store	enhancer?	What	is	the	difference	between	next
and	dispatch	in	a	middleware	function?
How	do	I	subscribe	to	only	a	portion	of	the	state?	Can	I	get	the	dispatched	action	as	part	of	the	subscription?

Actions
Why	should	type	be	a	string,	or	at	least	serializable?	Why	should	my	action	types	be	constants?
Is	there	always	a	one-to-one	mapping	between	reducers	and	actions?
How	can	I	represent	“side	effects”	such	as	AJAX	calls?	Why	do	we	need	things	like	“action	creators”,
“thunks”,	and	“middleware”	to	do	async	behavior?
What	async	middleware	should	I	use?	How	do	you	decide	between	thunks,	sagas,	observables,	or
something	else?
Should	I	dispatch	multiple	actions	in	a	row	from	one	action	creator?

Immutable	Data
What	are	the	benefits	of	immutability?
Why	is	immutability	required	by	Redux?
What	approaches	are	there	for	handling	data	immutability?	Do	I	have	to	use	Immutable.JS?
What	are	the	issues	with	using	JavaScript	for	immutable	operations?

Using	Immutable.JS	with	Redux
Why	should	I	use	an	immutable-focused	library	such	as	Immutable.JS?
Why	should	I	choose	Immutable.JS	as	an	immutable	library?
What	are	the	issues	with	using	Immutable.JS?
Is	Immutable.JS	worth	the	effort?
What	are	some	opinionated	Best	Practices	for	using	Immutable.JS	with	Redux?

Code	Structure
What	should	my	file	structure	look	like?	How	should	I	group	my	action	creators	and	reducers	in	my	project?
Where	should	my	selectors	go?
How	should	I	split	my	logic	between	reducers	and	action	creators?	Where	should	my	“business	logic”	go?
Why	should	I	use	action	creators?
Where	should	websockets	and	other	persistent	connections	live?

Performance

FAQ

212

How	well	does	Redux	“scale”	in	terms	of	performance	and	architecture?
Won't	calling	“all	my	reducers”	for	each	action	be	slow?
Do	I	have	to	deep-clone	my	state	in	a	reducer?	Isn't	copying	my	state	going	to	be	slow?
How	can	I	reduce	the	number	of	store	update	events?
Will	having	“one	state	tree”	cause	memory	problems?	Will	dispatching	many	actions	take	up	memory?
Will	caching	remote	data	cause	memory	problems?

Design	Decisions
Why	doesn't	Redux	pass	the	state	and	action	to	subscribers?
Why	doesn't	Redux	support	using	classes	for	actions	and	reducers?
Why	does	the	middleware	signature	use	currying?
Why	does	applyMiddleware	use	a	closure	for	dispatch?
Why	doesn't		combineReducers		include	a	third	argument	with	the	entire	state	when	it	calls	each	reducer?
Why	doesn't	mapDispatchToProps	allow	use	of	return	values	from		getState()		or		mapStateToProps()	?

React	Redux
Why	should	I	use	React-Redux?
Why	isn't	my	component	re-rendering,	or	my	mapStateToProps	running?
Why	is	my	component	re-rendering	too	often?
How	can	I	speed	up	my	mapStateToProps?
Why	don't	I	have	this.props.dispatch	available	in	my	connected	component?
Should	I	only	connect	my	top	component,	or	can	I	connect	multiple	components	in	my	tree?

Miscellaneous
Are	there	any	larger,	“real”	Redux	projects?
How	can	I	implement	authentication	in	Redux?

FAQ

213

Redux	FAQ:	General

Table	of	Contents
When	should	I	learn	Redux?
When	should	I	use	Redux?
Can	Redux	only	be	used	with	React?
Do	I	need	to	have	a	particular	build	tool	to	use	Redux?

General

When	should	I	learn	Redux?

What	to	learn	can	be	an	overwhelming	question	for	a	JavaScript	developer.	It	helps	to	narrow	the	range	of	options	by
learning	one	thing	at	a	time	and	focusing	on	problems	you	find	in	your	work.	Redux	is	a	pattern	for	managing
application	state.	If	you	do	not	have	problems	with	state	management,	you	might	find	the	benefits	of	Redux	harder	to
understand.	Some	UI	libraries	(like	React)	have	their	own	state	management	system.	If	you	are	using	one	of	these
libraries,	especially	if	you	are	just	learning	to	use	them,	we	encourage	you	to	learn	the	capabilities	of	that	built-in
system	first.	It	might	be	all	you	need	to	build	your	application.	If	your	application	becomes	so	complex	that	you	are
confused	about	where	state	is	stored	or	how	state	changes,	then	it	is	a	good	time	to	learn	Redux.	Experiencing	the
complexity	that	Redux	seeks	to	abstract	is	the	best	preparation	for	effectively	applying	that	abstraction	to	your	work.

Further	information

Articles

Deciding	What	Not	To	Learn
How	to	learn	web	frameworks
Redux	vs	MobX	vs	Flux	vs...	Do	you	even	need	that?

Discussions

Ask	HN:	Overwhelmed	with	learning	front-end,	how	do	I	proceed?
Twitter:	If	you	want	to	teach	someone	to	use	an	abstraction...
Twitter:	it	was	never	intended	to	be	learned	before...
Twitter:	Learning	Redux	before	React?
Twitter:	The	first	time	I	used	React,	people	told	me	I	needed	Redux...
Twitter:	This	was	my	experience	with	Redux...
Dev.to:	When	is	it	time	to	use	Redux?

When	should	I	use	Redux?

The	need	to	use	Redux	should	not	be	taken	for	granted.

As	Pete	Hunt,	one	of	the	early	contributors	to	React,	says:

You'll	know	when	you	need	Flux.	If	you	aren't	sure	if	you	need	it,	you	don't	need	it.

Similarly,	Dan	Abramov,	one	of	the	creators	of	Redux,	says:

I	would	like	to	amend	this:	don't	use	Redux	until	you	have	problems	with	vanilla	React.

General

214

http://gedd.ski/post/what-not-to-learn/
https://ux.shopify.com/how-to-learn-web-frameworks-9d447cb71e68
https://goshakkk.name/redux-vs-mobx-vs-flux-etoomanychoices/
https://news.ycombinator.com/item?id=12882816
https://twitter.com/acemarke/status/901329101088215044
https://twitter.com/dan_abramov/status/739961787295117312
https://twitter.com/dan_abramov/status/739962098030137344
https://twitter.com/raquelxmoss/status/901576285020856320
https://twitter.com/garetmckinley/status/901500556568645634
https://dev.to/dan_abramov/comment/1n2k

In	general,	use	Redux	when	you	have	reasonable	amounts	of	data	changing	over	time,	you	need	a	single	source	of
truth,	and	you	find	that	approaches	like	keeping	everything	in	a	top-level	React	component's	state	are	no	longer
sufficient.

However,	it's	also	important	to	understand	that	using	Redux	comes	with	tradeoffs.	It's	not	designed	to	be	the	shortest
or	fastest	way	to	write	code.	It's	intended	to	help	answer	the	question	"When	did	a	certain	slice	of	state	change,	and
where	did	the	data	come	from?",	with	predictable	behavior.	It	does	so	by	asking	you	to	follow	specific	constraints	in
your	application:	store	your	application's	state	as	plain	data,	describe	changes	as	plain	objects,	and	handle	those
changes	with	pure	functions	that	apply	updates	immutably.	This	is	often	the	source	of	complaints	about	"boilerplate".
These	constraints	require	effort	on	the	part	of	a	developer,	but	also	open	up	a	number	of	additional	possibilities	(such
as	store	persistence	and	synchronization).

In	the	end,	Redux	is	just	a	tool.	It's	a	great	tool,	and	there	are	some	great	reasons	to	use	it,	but	there	are	also	reasons
you	might	not	want	to	use	it.	Make	informed	decisions	about	your	tools,	and	understand	the	tradeoffs	involved	in	each
decision.

Further	information

Documentation

Introduction:	Motivation

Articles

React	How-To
You	Might	Not	Need	Redux
The	Case	for	Flux
Some	Reasons	Why	Redux	is	Useful	in	a	React	App

Discussions

Twitter:	Don't	use	Redux	until...
Twitter:	Redux	is	designed	to	be	predictable,	not	concise
Twitter:	Redux	is	useful	to	eliminate	deep	prop	passing
Twitter:	Don't	use	Redux	unless	you're	unhappy	with	local	component	state
Twitter:	You	don't	need	Redux	if	your	data	never	changes
Twitter:	If	your	reducer	looks	boring,	don't	use	redux
Reddit:	You	don't	need	Redux	if	your	app	just	fetches	something	on	a	single	page
Stack	Overflow:	Why	use	Redux	over	Facebook	Flux?
Stack	Overflow:	Why	should	I	use	Redux	in	this	example?
Stack	Overflow:	What	could	be	the	downsides	of	using	Redux	instead	of	Flux?
Stack	Overflow:	When	should	I	add	Redux	to	a	React	app?
Stack	Overflow:	Redux	vs	plain	React?
Twitter:	Redux	is	a	platform	for	developers	to	build	customized	state	management	with	reusable	things

Can	Redux	only	be	used	with	React?

Redux	can	be	used	as	a	data	store	for	any	UI	layer.	The	most	common	usage	is	with	React	and	React	Native,	but
there	are	bindings	available	for	Angular,	Angular	2,	Vue,	Mithril,	and	more.	Redux	simply	provides	a	subscription
mechanism	which	can	be	used	by	any	other	code.	That	said,	it	is	most	useful	when	combined	with	a	declarative	view
implementation	that	can	infer	the	UI	updates	from	the	state	changes,	such	as	React	or	one	of	the	similar	libraries
available.

Do	I	need	to	have	a	particular	build	tool	to	use	Redux?

General

215

https://github.com/petehunt/react-howto
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://medium.com/swlh/the-case-for-flux-379b7d1982c6
https://www.fullstackreact.com/articles/redux-with-mark-erikson/
https://twitter.com/dan_abramov/status/699241546248536064
https://twitter.com/dan_abramov/status/733742952657342464
https://twitter.com/dan_abramov/status/732912085840089088
https://twitter.com/dan_abramov/status/725089243836588032
https://twitter.com/dan_abramov/status/737036433215610880
https://twitter.com/dan_abramov/status/802564042648944642
https://www.reddit.com/r/reactjs/comments/5exfea/feedback_on_my_first_redux_app/dagglqp/
http://stackoverflow.com/questions/32461229/why-use-redux-over-facebook-flux
http://stackoverflow.com/questions/35675339/why-should-i-use-redux-in-this-example
http://stackoverflow.com/questions/32021763/what-could-be-the-downsides-of-using-redux-instead-of-flux
http://stackoverflow.com/questions/36631761/when-should-i-add-redux-to-a-react-app
http://stackoverflow.com/questions/39260769/redux-vs-plain-react/39261546#39261546
https://twitter.com/acemarke/status/793862722253447168

Redux	is	originally	written	in	ES6	and	transpiled	for	production	into	ES5	with	Webpack	and	Babel.	You	should	be	able
to	use	it	regardless	of	your	JavaScript	build	process.	Redux	also	offers	a	UMD	build	that	can	be	used	directly	without
any	build	process	at	all.	The	counter-vanilla	example	demonstrates	basic	ES5	usage	with	Redux	included	as	a
	<script>		tag.	As	the	relevant	pull	request	says:

The	new	Counter	Vanilla	example	is	aimed	to	dispel	the	myth	that	Redux	requires	Webpack,	React,	hot
reloading,	sagas,	action	creators,	constants,	Babel,	npm,	CSS	modules,	decorators,	fluent	Latin,	an	Egghead
subscription,	a	PhD,	or	an	Exceeds	Expectations	O.W.L.	level.

Nope,	it's	just	HTML,	some	artisanal		<script>		tags,	and	plain	old	DOM	manipulation.	Enjoy!

General

216

https://github.com/reduxjs/redux/tree/master/examples/counter-vanilla

Redux	FAQ:	Reducers

Table	of	Contents
How	do	I	share	state	between	two	reducers?	Do	I	have	to	use	combineReducers?
Do	I	have	to	use	the	switch	statement	to	handle	actions?

Reducers

How	do	I	share	state	between	two	reducers?	Do	I	have	to	use
	combineReducers	?

The	suggested	structure	for	a	Redux	store	is	to	split	the	state	object	into	multiple	“slices”	or	“domains”	by	key,	and
provide	a	separate	reducer	function	to	manage	each	individual	data	slice.	This	is	similar	to	how	the	standard	Flux
pattern	has	multiple	independent	stores,	and	Redux	provides	the		combineReducers		utility	function	to	make	this	pattern
easier.	However,	it's	important	to	note	that		combineReducers		is	not	required—it	is	simply	a	utility	function	for	the
common	use	case	of	having	a	single	reducer	function	per	state	slice,	with	plain	JavaScript	objects	for	the	data.

Many	users	later	want	to	try	to	share	data	between	two	reducers,	but	find	that		combineReducers		does	not	allow	them
to	do	so.	There	are	several	approaches	that	can	be	used:

If	a	reducer	needs	to	know	data	from	another	slice	of	state,	the	state	tree	shape	may	need	to	be	reorganized	so
that	a	single	reducer	is	handling	more	of	the	data.
You	may	need	to	write	some	custom	functions	for	handling	some	of	these	actions.	This	may	require	replacing
	combineReducers		with	your	own	top-level	reducer	function.	You	can	also	use	a	utility	such	as	reduce-reducers	to
run		combineReducers		to	handle	most	actions,	but	also	run	a	more	specialized	reducer	for	specific	actions	that
cross	state	slices.
Async	action	creators	such	as	redux-thunk	have	access	to	the	entire	state	through		getState()	.	An	action	creator
can	retrieve	additional	data	from	the	state	and	put	it	in	an	action,	so	that	each	reducer	has	enough	information	to
update	its	own	state	slice.

In	general,	remember	that	reducers	are	just	functions—you	can	organize	them	and	subdivide	them	any	way	you	want,
and	you	are	encouraged	to	break	them	down	into	smaller,	reusable	functions	(“reducer	composition”).	While	you	do
so,	you	may	pass	a	custom	third	argument	from	a	parent	reducer	if	a	child	reducer	needs	additional	data	to	calculate
its	next	state.	You	just	need	to	make	sure	that	together	they	follow	the	basic	rules	of	reducers:		(state,	action)	=>
newState	,	and	update	state	immutably	rather	than	mutating	it	directly.

Further	information

Documentation

API:	combineReducers
Recipes:	Structuring	Reducers

Discussions

#601:	A	concern	on	combineReducers,	when	an	action	is	related	to	multiple	reducers
#1400:	Is	passing	top-level	state	object	to	branch	reducer	an	anti-pattern?
Stack	Overflow:	Accessing	other	parts	of	the	state	when	using	combined	reducers?
Stack	Overflow:	Reducing	an	entire	subtree	with	redux	combineReducers

Reducers

217

https://github.com/acdlite/reduce-reducers
https://github.com/gaearon/redux-thunk
https://github.com/reduxjs/redux/issues/601
https://github.com/reduxjs/redux/issues/1400
http://stackoverflow.com/questions/34333979/accessing-other-parts-of-the-state-when-using-combined-reducers
http://stackoverflow.com/questions/34427851/reducing-an-entire-subtree-with-redux-combinereducers

Sharing	State	Between	Redux	Reducers

Do	I	have	to	use	the		switch		statement	to	handle	actions?

No.	You	are	welcome	to	use	any	approach	you'd	like	to	respond	to	an	action	in	a	reducer.	The		switch		statement	is
the	most	common	approach,	but	it's	fine	to	use		if		statements,	a	lookup	table	of	functions,	or	to	create	a	function
that	abstracts	this	away.	In	fact,	while	Redux	does	require	that	action	objects	contain	a		type		field,	your	reducer	logic
doesn't	even	have	to	rely	on	that	to	handle	the	action.	That	said,	the	standard	approach	is	definitely	using	a	switch
statement	or	a	lookup	table	based	on		type	.

Further	information

Documentation

Recipes:	Reducing	Boilerplate
Recipes:	Structuring	Reducers	-	Splitting	Reducer	Logic

Discussions

#883:	take	away	the	huge	switch	block
#1167:	Reducer	without	switch

Reducers

218

https://invalidpatent.wordpress.com/2016/02/18/sharing-state-between-redux-reducers/
https://github.com/reduxjs/redux/issues/883
https://github.com/reduxjs/redux/issues/1167

Redux	FAQ:	Organizing	State

Table	of	Contents
Do	I	have	to	put	all	my	state	into	Redux?	Should	I	ever	use	React's	setState()?
Can	I	put	functions,	promises,	or	other	non-serializable	items	in	my	store	state?
How	do	I	organize	nested	or	duplicate	data	in	my	state?
Should	I	put	form	state	or	other	UI	state	in	my	store?

Organizing	State

Do	I	have	to	put	all	my	state	into	Redux?	Should	I	ever	use	React's
	setState()	?

There	is	no	“right”	answer	for	this.	Some	users	prefer	to	keep	every	single	piece	of	data	in	Redux,	to	maintain	a	fully
serializable	and	controlled	version	of	their	application	at	all	times.	Others	prefer	to	keep	non-critical	or	UI	state,	such
as	“is	this	dropdown	currently	open”,	inside	a	component's	internal	state.

Using	local	component	state	is	fine.	As	a	developer,	it	is	your	job	to	determine	what	kinds	of	state	make	up	your
application,	and	where	each	piece	of	state	should	live.	Find	a	balance	that	works	for	you,	and	go	with	it.

Some	common	rules	of	thumb	for	determining	what	kind	of	data	should	be	put	into	Redux:

Do	other	parts	of	the	application	care	about	this	data?
Do	you	need	to	be	able	to	create	further	derived	data	based	on	this	original	data?
Is	the	same	data	being	used	to	drive	multiple	components?
Is	there	value	to	you	in	being	able	to	restore	this	state	to	a	given	point	in	time	(ie,	time	travel	debugging)?
Do	you	want	to	cache	the	data	(ie,	use	what's	in	state	if	it's	already	there	instead	of	re-requesting	it)?
Do	you	want	to	keep	this	data	consistent	while	hot-reloading	UI	components	(which	may	lose	their	internal	state
when	swapped)?

There	are	a	number	of	community	packages	that	implement	various	approaches	for	storing	per-component	state	in	a
Redux	store	instead,	such	as	redux-ui,	redux-component,	redux-react-local,	and	more.	It's	also	possible	to	apply
Redux's	principles	and	concept	of	reducers	to	the	task	of	updating	local	component	state	as	well,	along	the	lines	of
	this.setState((previousState)	=>	reducer(previousState,	someAction))	.

Further	information

Articles

You	Might	Not	Need	Redux
Finding		state	's	place	with	React	and	Redux
A	Case	for	setState
How	to	handle	state	in	React:	the	missing	FAQ
Where	to	Hold	React	Component	Data:	state,	store,	static,	and	this
The	5	Types	of	React	Application	State
Shape	Your	Redux	Store	Like	Your	Database

Discussions

#159:	Investigate	using	Redux	for	pseudo-local	component	state

Organizing	State

219

https://github.com/tonyhb/redux-ui
https://github.com/tomchentw/redux-component
https://github.com/threepointone/redux-react-local
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://medium.com/@adamrackis/finding-state-s-place-with-react-and-redux-e9a586630172
https://medium.com/@zackargyle/a-case-for-setstate-1f1c47cd3f73
https://medium.com/react-ecosystem/how-to-handle-state-in-react-6f2d3cd73a0c
https://medium.freecodecamp.com/where-do-i-belong-a-guide-to-saving-react-component-data-in-state-store-static-and-this-c49b335e2a00
http://jamesknelson.com/5-types-react-application-state/
https://hackernoon.com/shape-your-redux-store-like-your-database-98faa4754fd5
https://github.com/reduxjs/redux/issues/159

#1098:	Using	Redux	in	reusable	React	component
#1287:	How	to	choose	between	Redux's	store	and	React's	state?
#1385:	What	are	the	disadvantages	of	storing	all	your	state	in	a	single	immutable	atom?
Twitter:	Should	I	keep	something	in	React	component	state?
Twitter:	Using	a	reducer	to	update	a	component
React	Forums:	Redux	and	global	state	vs	local	state
Reddit:	"When	should	I	put	something	into	my	Redux	store?"
Stack	Overflow:	Why	is	state	all	in	one	place,	even	state	that	isn't	global?
Stack	Overflow:	Should	all	component	state	be	kept	in	Redux	store?

Libraries

Redux	Addons	Catalog:	Component	State

Can	I	put	functions,	promises,	or	other	non-serializable	items	in	my	store
state?

It	is	highly	recommended	that	you	only	put	plain	serializable	objects,	arrays,	and	primitives	into	your	store.	It's
technically	possible	to	insert	non-serializable	items	into	the	store,	but	doing	so	can	break	the	ability	to	persist	and
rehydrate	the	contents	of	a	store,	as	well	as	interfere	with	time-travel	debugging.

If	you	are	okay	with	things	like	persistence	and	time-travel	debugging	potentially	not	working	as	intended,	then	you
are	totally	welcome	to	put	non-serializable	items	into	your	Redux	store.	Ultimately,	it's	your	application,	and	how	you
implement	it	is	up	to	you.	As	with	many	other	things	about	Redux,	just	be	sure	you	understand	what	tradeoffs	are
involved.

Further	information

Discussions

#1248:	Is	it	ok	and	possible	to	store	a	react	component	in	a	reducer?
#1279:	Have	any	suggestions	for	where	to	put	a	Map	Component	in	Flux?
#1390:	Component	Loading
#1407:	Just	sharing	a	great	base	class
#1793:	React	Elements	in	Redux	State

How	do	I	organize	nested	or	duplicate	data	in	my	state?

Data	with	IDs,	nesting,	or	relationships	should	generally	be	stored	in	a	“normalized”	fashion:	each	object	should	be
stored	once,	keyed	by	ID,	and	other	objects	that	reference	it	should	only	store	the	ID	rather	than	a	copy	of	the	entire
object.	It	may	help	to	think	of	parts	of	your	store	as	a	database,	with	individual	“tables”	per	item	type.	Libraries	such	as
normalizr	and	redux-orm	can	provide	help	and	abstractions	in	managing	normalized	data.

Further	information

Documentation

Advanced:	Async	Actions
Examples:	Real	World	example
Recipes:	Structuring	Reducers	-	Prerequisite	Concepts
Recipes:	Structuring	Reducers	-	Normalizing	State	Shape
Examples:	Tree	View

Articles

Organizing	State

220

https://github.com/reduxjs/redux/issues/1098
https://github.com/reduxjs/redux/issues/1287
https://github.com/reduxjs/redux/issues/1385
https://twitter.com/dan_abramov/status/749710501916139520
https://twitter.com/dan_abramov/status/736310245945933824
https://discuss.reactjs.org/t/redux-and-global-state-vs-local-state/4187
https://www.reddit.com/r/reactjs/comments/4w04to/when_using_redux_should_all_asynchronous_actions/d63u4o8
http://stackoverflow.com/questions/35664594/redux-why-is-state-all-in-one-place-even-state-that-isnt-global
http://stackoverflow.com/questions/35328056/react-redux-should-all-component-states-be-kept-in-redux-store
https://github.com/markerikson/redux-ecosystem-links/blob/master/component-state.md
https://github.com/reduxjs/redux/issues/1248
https://github.com/reduxjs/redux/issues/1279
https://github.com/reduxjs/redux/issues/1390
https://github.com/reduxjs/redux/issues/1407
https://github.com/reduxjs/redux/issues/1793
https://github.com/paularmstrong/normalizr
https://github.com/tommikaikkonen/redux-orm
https://github.com/reduxjs/redux/tree/master/examples/tree-view

High-Performance	Redux
Querying	a	Redux	Store

Discussions

#316:	How	to	create	nested	reducers?
#815:	Working	with	Data	Structures
#946:	Best	way	to	update	related	state	fields	with	split	reducers?
#994:	How	to	cut	the	boilerplate	when	updating	nested	entities?
#1255:	Normalizr	usage	with	nested	objects	in	React/Redux
#1269:	Add	tree	view	example
#1824:	Normalising	state	and	garbage	collection
Twitter:	state	shape	should	be	normalized
Stack	Overflow:	How	to	handle	tree-shaped	entities	in	Redux	reducers?
Stack	Overflow:	How	to	optimize	small	updates	to	props	of	nested	components	in	React	+	Redux?

Should	I	put	form	state	or	other	UI	state	in	my	store?

The	same	rules	of	thumb	for	deciding	what	should	go	in	the	Redux	store	apply	for	this	question	as	well.

Based	on	those	rules	of	thumb,	most	form	state	doesn't	need	to	go	into	Redux,	as	it's	probably	not	being	shared
between	components.	However,	that	decision	is	always	going	to	be	specific	to	you	and	your	application.	You	might
choose	to	keep	some	form	state	in	Redux	because	you	are	editing	data	that	came	from	the	store	originally,	or
because	you	do	need	to	see	the	work-in-progress	values	reflected	in	other	components	elsewhere	in	the	application.
On	the	other	hand,	it	may	be	a	lot	simpler	to	keep	the	form	state	local	to	the	component,	and	only	dispatch	an	action
to	put	the	data	in	the	store	once	the	user	is	done	with	the	form.

Based	on	this,	in	most	cases	you	probably	don't	need	a	Redux-based	form	management	library	either.	We	suggest
trying	these	approaches,	in	this	order:

Even	if	the	data	is	coming	from	the	Redux	store,	start	by	writing	your	form	logic	by	hand.	It's	likely	this	is	all	you'll
need.	(See	Gosha	Arinich's	posts	on	working	with	forms	in	React	for	some	excellent	guidance	on	this.)
If	you	decide	that	writing	forms	"manually"	is	too	difficult,	try	a	React-based	form	library	like	Formik	or	React-
Final-Form.
If	you	are	absolutely	sure	you	must	use	a	Redux-based	form	library	because	the	other	approaches	aren't
sufficient,	then	you	may	finally	want	to	look	at	Redux-Form	and	React-Redux-Form.

If	you	are	keeping	form	state	in	Redux,	you	should	take	some	time	to	consider	performance	characteristics.
Dispatching	an	action	on	every	keystroke	of	a	text	input	probably	isn't	worthwhile,	and	you	may	want	to	look	into	ways
to	buffer	keystrokes	to	keep	changes	local	before	dispatching.	As	always,	take	some	time	to	analyze	the	overall
performance	needs	of	your	own	application.

Other	kinds	of	UI	state	follow	these	rules	of	thumb	as	well.	The	classic	example	is	tracking	an		isDropdownOpen		flag.	In
most	situations,	the	rest	of	the	app	doesn't	care	about	this,	so	in	most	cases	it	should	stay	in	component	state.
However,	depending	on	your	application,	it	may	make	sense	to	use	Redux	to	manage	dialogs	and	other	popups,	tabs,
expanding	panels,	and	so	on.

Further	Information

Articles

Gosha	Arinich:	Writings	on	Forms	in	React
Practical	Redux,	Part	6:	Connected	Lists	and	Forms
Practical	Redux,	Part	7:	Form	Change	Handling
Practical	Redux,	Part	10:	Managing	Modals	and	Context	Menus

Organizing	State

221

http://somebody32.github.io/high-performance-redux/
https://medium.com/@adamrackis/querying-a-redux-store-37db8c7f3b0f
https://github.com/reduxjs/redux/issues/316
https://github.com/reduxjs/redux/issues/815
https://github.com/reduxjs/redux/issues/946
https://github.com/reduxjs/redux/issues/994
https://github.com/reduxjs/redux/issues/1255
https://github.com/reduxjs/redux/pull/1269
https://github.com/reduxjs/redux/issues/1824#issuecomment-228585904
https://twitter.com/dan_abramov/status/715507260244496384
http://stackoverflow.com/questions/32798193/how-to-handle-tree-shaped-entities-in-redux-reducers
http://stackoverflow.com/questions/37264415/how-to-optimize-small-updates-to-props-of-nested-component-in-react-redux
https://goshakkk.name/on-forms-react/
https://github.com/jaredpalmer/formik
https://github.com/final-form/react-final-form
https://github.com/erikras/redux-form
https://github.com/davidkpiano/react-redux-form
https://blog.isquaredsoftware.com/2017/01/practical-redux-part-7-forms-editing-reducers/
https://blog.isquaredsoftware.com/2017/07/practical-redux-part-10-managing-modals/
https://goshakkk.name/on-forms-react/
https://blog.isquaredsoftware.com/2017/01/practical-redux-part-6-connected-lists-forms-and-performance/
https://blog.isquaredsoftware.com/2017/01/practical-redux-part-7-forms-editing-reducers/
https://blog.isquaredsoftware.com/2017/07/practical-redux-part-10-managing-modals/

React/Redux	Links:	Redux	UI	Management

Organizing	State

222

https://github.com/markerikson/react-redux-links/blob/master/redux-ui-management.md

Redux	FAQ:	Store	Setup

Table	of	Contents
Can	or	should	I	create	multiple	stores?	Can	I	import	my	store	directly,	and	use	it	in	components	myself?
Is	it	OK	to	have	more	than	one	middleware	chain	in	my	store	enhancer?	What	is	the	difference	between	next	and
dispatch	in	a	middleware	function?
How	do	I	subscribe	to	only	a	portion	of	the	state?	Can	I	get	the	dispatched	action	as	part	of	the	subscription?

Store	Setup

Can	or	should	I	create	multiple	stores?	Can	I	import	my	store	directly,	and
use	it	in	components	myself?

The	original	Flux	pattern	describes	having	multiple	“stores”	in	an	app,	each	one	holding	a	different	area	of	domain
data.	This	can	introduce	issues	such	as	needing	to	have	one	store	“	waitFor	”	another	store	to	update.	This	is	not
necessary	in	Redux	because	the	separation	between	data	domains	is	already	achieved	by	splitting	a	single	reducer
into	smaller	reducers.

As	with	several	other	questions,	it	is	possible	to	create	multiple	distinct	Redux	stores	in	a	page,	but	the	intended
pattern	is	to	have	only	a	single	store.	Having	a	single	store	enables	using	the	Redux	DevTools,	makes	persisting	and
rehydrating	data	simpler,	and	simplifies	the	subscription	logic.

Some	valid	reasons	for	using	multiple	stores	in	Redux	might	include:

Solving	a	performance	issue	caused	by	too	frequent	updates	of	some	part	of	the	state,	when	confirmed	by
profiling	the	app.
Isolating	a	Redux	app	as	a	component	in	a	bigger	application,	in	which	case	you	might	want	to	create	a	store	per
root	component	instance.

However,	creating	new	stores	shouldn't	be	your	first	instinct,	especially	if	you	come	from	a	Flux	background.	Try
reducer	composition	first,	and	only	use	multiple	stores	if	it	doesn't	solve	your	problem.

Similarly,	while	you	can	reference	your	store	instance	by	importing	it	directly,	this	is	not	a	recommended	pattern	in
Redux.	If	you	create	a	store	instance	and	export	it	from	a	module,	it	will	become	a	singleton.	This	means	it	will	be
harder	to	isolate	a	Redux	app	as	a	component	of	a	larger	app,	if	this	is	ever	necessary,	or	to	enable	server	rendering,
because	on	the	server	you	want	to	create	separate	store	instances	for	every	request.

With	React	Redux,	the	wrapper	classes	generated	by	the		connect()		function	do	actually	look	for		props.store		if	it
exists,	but	it's	best	if	you	wrap	your	root	component	in		<Provider	store={store}>		and	let	React	Redux	worry	about
passing	the	store	down.	This	way	components	don't	need	to	worry	about	importing	a	store	module,	and	isolating	a
Redux	app	or	enabling	server	rendering	is	much	easier	to	do	later.

Further	information

Documentation

API:	Store

Discussions

#1346:	Is	it	bad	practice	to	just	have	a	'stores'	directory?

Store	Setup

223

https://github.com/reduxjs/react-redux
https://github.com/reduxjs/redux/issues/1436

Stack	Overflow:	Redux	multiple	stores,	why	not?
Stack	Overflow:	Accessing	Redux	state	in	an	action	creator
Gist:	Breaking	out	of	Redux	paradigm	to	isolate	apps

Is	it	OK	to	have	more	than	one	middleware	chain	in	my	store	enhancer?	What
is	the	difference	between		next		and		dispatch		in	a	middleware	function?

Redux	middleware	act	like	a	linked	list.	Each	middleware	function	can	either	call		next(action)		to	pass	an	action
along	to	the	next	middleware	in	line,	call		dispatch(action)		to	restart	the	processing	at	the	beginning	of	the	list,	or	do
nothing	at	all	to	stop	the	action	from	being	processed	further.

This	chain	of	middleware	is	defined	by	the	arguments	passed	to	the		applyMiddleware		function	used	when	creating	a
store.	Defining	multiple	chains	will	not	work	correctly,	as	they	would	have	distinctly	different		dispatch		references	and
the	different	chains	would	effectively	be	disconnected.

Further	information

Documentation

Advanced:	Middleware
API:	applyMiddleware

Discussions

#1051:	Shortcomings	of	the	current	applyMiddleware	and	composing	createStore
Understanding	Redux	Middleware
Exploring	Redux	Middleware

How	do	I	subscribe	to	only	a	portion	of	the	state?	Can	I	get	the	dispatched
action	as	part	of	the	subscription?

Redux	provides	a	single		store.subscribe		method	for	notifying	listeners	that	the	store	has	updated.	Listener	callbacks
do	not	receive	the	current	state	as	an	argument—it	is	simply	an	indication	that	something	has	changed.	The
subscriber	logic	can	then	call		getState()		to	get	the	current	state	value.

This	API	is	intended	as	a	low-level	primitive	with	no	dependencies	or	complications,	and	can	be	used	to	build	higher-
level	subscription	logic.	UI	bindings	such	as	React	Redux	can	create	a	subscription	for	each	connected	component.	It
is	also	possible	to	write	functions	that	can	intelligently	compare	the	old	state	vs	the	new	state,	and	execute	additional
logic	if	certain	pieces	have	changed.	Examples	include	redux-watch,	redux-subscribe	and	redux-subscriber	which
offer	different	approaches	to	specifying	subscriptions	and	handling	changes.

The	new	state	is	not	passed	to	the	listeners	in	order	to	simplify	implementing	store	enhancers	such	as	the	Redux
DevTools.	In	addition,	subscribers	are	intended	to	react	to	the	state	value	itself,	not	the	action.	Middleware	can	be
used	if	the	action	is	important	and	needs	to	be	handled	specifically.

Further	information

Documentation

Basics:	Store
API:	Store

Discussions

#303:	subscribe	API	with	state	as	an	argument
#580:	Is	it	possible	to	get	action	and	state	in	store.subscribe?

Store	Setup

224

http://stackoverflow.com/questions/33619775/redux-multiple-stores-why-not
http://stackoverflow.com/questions/35667249/accessing-redux-state-in-an-action-creator
https://gist.github.com/gaearon/eeee2f619620ab7b55673a4ee2bf8400
https://github.com/reduxjs/redux/issues/1051
https://medium.com/@meagle/understanding-87566abcfb7a
http://blog.krawaller.se/posts/exploring-redux-middleware/
https://github.com/jprichardson/redux-watch
https://github.com/ashaffer/redux-subscribe
https://github.com/ivantsov/redux-subscriber
https://github.com/reduxjs/redux/issues/303
https://github.com/reduxjs/redux/issues/580

#922:	Proposal:	add	subscribe	to	middleware	API
#1057:	subscribe	listener	can	get	action	param?
#1300:	Redux	is	great	but	major	feature	is	missing

Libraries

Redux	Addons	Catalog:	Store	Change	Subscriptions

Store	Setup

225

https://github.com/reduxjs/redux/issues/922
https://github.com/reduxjs/redux/issues/1057
https://github.com/reduxjs/redux/issues/1300
https://github.com/markerikson/redux-ecosystem-links/blob/master/store.md#store-change-subscriptions

Redux	FAQ:	Actions

Table	of	Contents
Why	should	type	be	a	string,	or	at	least	serializable?	Why	should	my	action	types	be	constants?
Is	there	always	a	one-to-one	mapping	between	reducers	and	actions?
How	can	I	represent	“side	effects”	such	as	AJAX	calls?	Why	do	we	need	things	like	“action	creators”,	“thunks”,
and	“middleware”	to	do	async	behavior?
What	async	middleware	should	I	use?	How	do	you	decide	between	thunks,	sagas,	observables,	or	something
else?
Should	I	dispatch	multiple	actions	in	a	row	from	one	action	creator?

Actions

Why	should		type		be	a	string,	or	at	least	serializable?	Why	should	my
action	types	be	constants?

As	with	state,	serializable	actions	enable	several	of	Redux's	defining	features,	such	as	time	travel	debugging,	and
recording	and	replaying	actions.	Using	something	like	a		Symbol		for	the		type		value	or	using		instanceof		checks	for
actions	themselves	would	break	that.	Strings	are	serializable	and	easily	self-descriptive,	and	so	are	a	better	choice.
Note	that	it	is	okay	to	use	Symbols,	Promises,	or	other	non-serializable	values	in	an	action	if	the	action	is	intended	for
use	by	middleware.	Actions	only	need	to	be	serializable	by	the	time	they	actually	reach	the	store	and	are	passed	to
the	reducers.

We	can't	reliably	enforce	serializable	actions	for	performance	reasons,	so	Redux	only	checks	that	every	action	is	a
plain	object,	and	that	the		type		is	defined.	The	rest	is	up	to	you,	but	you	might	find	that	keeping	everything
serializable	helps	debug	and	reproduce	issues.

Encapsulating	and	centralizing	commonly	used	pieces	of	code	is	a	key	concept	in	programming.	While	it	is	certainly
possible	to	manually	create	action	objects	everywhere,	and	write	each		type		value	by	hand,	defining	reusable
constants	makes	maintaining	code	easier.	If	you	put	constants	in	a	separate	file,	you	can	check	your		import	
statements	against	typos	so	you	can't	accidentally	use	the	wrong	string.

Further	information

Documentation

Reducing	Boilerplate

Discussion

#384:	Recommend	that	Action	constants	be	named	in	the	past	tense
#628:	Solution	for	simple	action	creation	with	less	boilerplate
#1024:	Proposal:	Declarative	reducers
#1167:	Reducer	without	switch
Stack	Overflow:	Why	do	you	need	'Actions'	as	data	in	Redux?
Stack	Overflow:	What	is	the	point	of	the	constants	in	Redux?

Is	there	always	a	one-to-one	mapping	between	reducers	and	actions?

Actions

226

https://www.npmjs.com/package/eslint-plugin-import
https://github.com/reactjs/redux/issues/384
https://github.com/reactjs/redux/issues/628
https://github.com/reactjs/redux/issues/1024
https://github.com/reactjs/redux/issues/1167
http://stackoverflow.com/q/34759047/62937
http://stackoverflow.com/q/34965856/62937

No.	We	suggest	you	write	independent	small	reducer	functions	that	are	each	responsible	for	updates	to	a	specific
slice	of	state.	We	call	this	pattern	“reducer	composition”.	A	given	action	could	be	handled	by	all,	some,	or	none	of
them.	This	keeps	components	decoupled	from	the	actual	data	changes,	as	one	action	may	affect	different	parts	of	the
state	tree,	and	there	is	no	need	for	the	component	to	be	aware	of	this.	Some	users	do	choose	to	bind	them	more
tightly	together,	such	as	the	“ducks”	file	structure,	but	there	is	definitely	no	one-to-one	mapping	by	default,	and	you
should	break	out	of	such	a	paradigm	any	time	you	feel	you	want	to	handle	an	action	in	many	reducers.

Further	information

Documentation

Basics:	Reducers
Recipes:	Structuring	Reducers

Discussions

Twitter:	most	common	Redux	misconception
#1167:	Reducer	without	switch
Reduxible	#8:	Reducers	and	action	creators	aren't	a	one-to-one	mapping
Stack	Overflow:	Can	I	dispatch	multiple	actions	without	Redux	Thunk	middleware?

How	can	I	represent	“side	effects”	such	as	AJAX	calls?	Why	do	we	need
things	like	“action	creators”,	“thunks”,	and	“middleware”	to	do	async
behavior?

This	is	a	long	and	complex	topic,	with	a	wide	variety	of	opinions	on	how	code	should	be	organized	and	what
approaches	should	be	used.

Any	meaningful	web	app	needs	to	execute	complex	logic,	usually	including	asynchronous	work	such	as	making	AJAX
requests.	That	code	is	no	longer	purely	a	function	of	its	inputs,	and	the	interactions	with	the	outside	world	are	known
as	“side	effects”

Redux	is	inspired	by	functional	programming,	and	out	of	the	box,	has	no	place	for	side	effects	to	be	executed.	In
particular,	reducer	functions	must	always	be	pure	functions	of		(state,	action)	=>	newState	.	However,	Redux's
middleware	makes	it	possible	to	intercept	dispatched	actions	and	add	additional	complex	behavior	around	them,
including	side	effects.

In	general,	Redux	suggests	that	code	with	side	effects	should	be	part	of	the	action	creation	process.	While	that	logic
can	be	performed	inside	of	a	UI	component,	it	generally	makes	sense	to	extract	that	logic	into	a	reusable	function	so
that	the	same	logic	can	be	called	from	multiple	places—in	other	words,	an	action	creator	function.

The	simplest	and	most	common	way	to	do	this	is	to	add	the	Redux	Thunk	middleware	that	lets	you	write	action
creators	with	more	complex	and	asynchronous	logic.	Another	widely-used	method	is	Redux	Saga	which	lets	you	write
more	synchronous-looking	code	using	generators,	and	can	act	like	“background	threads”	or	“daemons”	in	a	Redux
app.	Yet	another	approach	is	Redux	Loop,	which	inverts	the	process	by	allowing	your	reducers	to	declare	side	effects
in	response	to	state	changes	and	have	them	executed	separately.	Beyond	that,	there	are	many	other	community-
developed	libraries	and	ideas,	each	with	their	own	take	on	how	side	effects	should	be	managed.

Further	information

Documentation

Advanced:	Async	Actions
Advanced:	Async	Flow
Advanced:	Middleware

Actions

227

https://twitter.com/dan_abramov/status/682923564006248448
https://github.com/reactjs/redux/issues/1167
https://github.com/reduxible/reduxible/issues/8
http://stackoverflow.com/questions/35493352/can-i-dispatch-multiple-actions-without-redux-thunk-middleware/35642783
https://en.wikipedia.org/wiki/Side_effect_%28computer_science%29
https://github.com/gaearon/redux-thunk
https://github.com/yelouafi/redux-saga
https://github.com/raisemarketplace/redux-loop

Articles

Redux	Side-Effects	and	You
Pure	functionality	and	side	effects	in	Redux
From	Flux	to	Redux:	Async	Actions	the	easy	way
React/Redux	Links:	"Redux	Side	Effects"	category
Gist:	Redux-Thunk	examples

Discussions

#291:	Trying	to	put	API	calls	in	the	right	place
#455:	Modeling	side	effects
#533:	Simpler	introduction	to	async	action	creators
#569:	Proposal:	API	for	explicit	side	effects
#1139:	An	alternative	side	effect	model	based	on	generators	and	sagas
Stack	Overflow:	Why	do	we	need	middleware	for	async	flow	in	Redux?
Stack	Overflow:	How	to	dispatch	a	Redux	action	with	a	timeout?
Stack	Overflow:	Where	should	I	put	synchronous	side	effects	linked	to	actions	in	redux?
Stack	Overflow:	How	to	handle	complex	side-effects	in	Redux?
Stack	Overflow:	How	to	unit	test	async	Redux	actions	to	mock	ajax	response
Stack	Overflow:	How	to	fire	AJAX	calls	in	response	to	the	state	changes	with	Redux?
Reddit:	Help	performing	Async	API	calls	with	Redux-Promise	Middleware.
Twitter:	possible	comparison	between	sagas,	loops,	and	other	approaches

What	async	middleware	should	I	use?	How	do	you	decide	between	thunks,
sagas,	observables,	or	something	else?

There	are	many	async/side	effect	middlewares	available,	but	the	most	commonly	used	ones	are		redux-thunk	,		redux-
saga	,	and		redux-observable	.	These	are	different	tools,	with	different	strengths,	weaknesses,	and	use	cases.

As	a	general	rule	of	thumb:

Thunks	are	best	for	complex	synchronous	logic	(especially	code	that	needs	access	to	the	entire	Redux	store
state),	and	simple	async	logic	(like	basic	AJAX	calls).	With	the	use	of		async/await	,	it	can	be	reasonable	to	use
thunks	for	some	more	complex	promise-based	logic	as	well.
Sagas	are	best	for	complex	async	logic	and	decoupled	"background	thread"-type	behavior,	especially	if	you	need
to	listen	to	dispatched	actions	(which	is	something	that	can't	be	done	with	thunks).	They	require	familiarity	with
ES6	generator	functions	and		redux-saga	's	"effects"	operators.
Observables	solve	the	same	problems	as	sagas,	but	rely	on	RxJS	to	implement	async	behavior.	They	require
familiarity	with	the	RxJS	API.

We	recommend	that	most	Redux	users	should	start	with	thunks,	and	then	add	an	additional	side	effect	library	like
sagas	or	observables	later	if	their	app	really	requires	handling	for	more	complex	async	logic.

Since	sagas	and	observables	have	the	same	use	case,	an	application	would	normally	use	one	or	the	other,	but	not
both.	However,	note	that	it's	absolutely	fine	to	use	both	thunks	and	either	sagas	or	observables	together,
because	they	solve	different	problems.

Articles

Decembersoft:	What	is	the	right	way	to	do	asynchronous	operations	in	Redux?
Decembersoft:	Redux-Thunk	vs	Redux-Saga
Redux-Thunk	vs	Redux-Saga:	an	overview
Redux-Saga	V.S.	Redux-Observable

Discussions

Actions

228

https://medium.com/@fward/redux-side-effects-and-you-66f2e0842fc3
http://blog.hivejs.org/building-the-ui-2/
http://danmaz74.me/2015/08/19/from-flux-to-redux-async-actions-the-easy-way/
https://github.com/markerikson/react-redux-links/blob/master/redux-side-effects.md
https://gist.github.com/markerikson/ea4d0a6ce56ee479fe8b356e099f857e
https://github.com/reactjs/redux/issues/291
https://github.com/reactjs/redux/issues/455
https://github.com/reactjs/redux/issues/533
https://github.com/reactjs/redux/pull/569
https://github.com/reactjs/redux/issues/1139
http://stackoverflow.com/questions/34570758/why-do-we-need-middleware-for-async-flow-in-redux
http://stackoverflow.com/questions/35411423/how-to-dispatch-a-redux-action-with-a-timeout/35415559
http://stackoverflow.com/questions/32982237/where-should-i-put-synchronous-side-effects-linked-to-actions-in-redux/33036344
http://stackoverflow.com/questions/32925837/how-to-handle-complex-side-effects-in-redux/33036594
http://stackoverflow.com/questions/33011729/how-to-unit-test-async-redux-actions-to-mock-ajax-response/33053465
http://stackoverflow.com/questions/35262692/how-to-fire-ajax-calls-in-response-to-the-state-changes-with-redux/35675447
https://www.reddit.com/r/reactjs/comments/469iyc/help_performing_async_api_calls_with_reduxpromise/
https://twitter.com/dan_abramov/status/689639582120415232
https://github.com/markerikson/redux-ecosystem-links/blob/master/side-effects.md
https://github.com/reduxjs/redux-thunk
https://github.com/redux-saga/redux-saga
https://github.com/redux-observable/redux-observable
https://decembersoft.com/posts/what-is-the-right-way-to-do-asynchronous-operations-in-redux/
https://decembersoft.com/posts/redux-thunk-vs-redux-saga/
https://medium.com/@shoshanarosenfield/redux-thunk-vs-redux-saga-93fe82878b2d
https://hackmd.io/s/H1xLHUQ8e#side-by-side-comparison

Reddit:	discussion	of	using	thunks	and	sagas	together,	and	pros	and	cons	of	sagas
Stack	Overflow:	Pros/cons	of	using	redux-saga	with	ES6	generators	vs	redux-thunk	with	ES2017	async/await
Stack	Overflow:	Why	use	Redux-Observable	over	Redux-Saga?

Should	I	dispatch	multiple	actions	in	a	row	from	one	action	creator?

There's	no	specific	rule	for	how	you	should	structure	your	actions.	Using	an	async	middleware	like	Redux	Thunk
certainly	enables	scenarios	such	as	dispatching	multiple	distinct	but	related	actions	in	a	row,	dispatching	actions	to
represent	progression	of	an	AJAX	request,	dispatching	actions	conditionally	based	on	state,	or	even	dispatching	an
action	and	checking	the	updated	state	immediately	afterwards.

In	general,	ask	if	these	actions	are	related	but	independent,	or	should	actually	be	represented	as	one	action.	Do	what
makes	sense	for	your	own	situation	but	try	to	balance	the	readability	of	reducers	with	readability	of	the	action	log.	For
example,	an	action	that	includes	the	whole	new	state	tree	would	make	your	reducer	a	one-liner,	but	the	downside	is
now	you	have	no	history	of	why	the	changes	are	happening,	so	debugging	gets	really	difficult.	On	the	other	hand,	if
you	emit	actions	in	a	loop	to	keep	them	granular,	it's	a	sign	that	you	might	want	to	introduce	a	new	action	type	that	is
handled	in	a	different	way.

Try	to	avoid	dispatching	several	times	synchronously	in	a	row	in	the	places	where	you're	concerned	about
performance.	There	are	a	number	of	addons	and	approaches	that	can	batch	up	dispatches	as	well.

Further	information

Documentation

FAQ:	Performance	-	Reducing	Update	Events

Articles

Idiomatic	Redux:	Thoughts	on	Thunks,	Sagas,	Abstraction,	and	Reusability

Discussions

#597:	Valid	to	dispatch	multiple	actions	from	an	event	handler?
#959:	Multiple	actions	one	dispatch?
Stack	Overflow:	Should	I	use	one	or	several	action	types	to	represent	this	async	action?
Stack	Overflow:	Do	events	and	actions	have	a	1:1	relationship	in	Redux?
Stack	Overflow:	Should	actions	be	handled	by	reducers	to	related	actions	or	generated	by	action	creators
themselves?
Twitter:	"Good	thread	on	the	problems	with	Redux	Thunk..."

Actions

229

https://www.reddit.com/r/reactjs/comments/8vglo0/react_developer_map_by_adamgolab/e1nr597/
https://stackoverflow.com/questions/34930735/pros-cons-of-using-redux-saga-with-es6-generators-vs-redux-thunk-with-es2017-asy
https://stackoverflow.com/questions/40021344/why-use-redux-observable-over-redux-saga/40027778#40027778
http://blog.isquaredsoftware.com/2017/01/idiomatic-redux-thoughts-on-thunks-sagas-abstraction-and-reusability/#multiple-dispatching
https://github.com/reactjs/redux/issues/597
https://github.com/reactjs/redux/issues/959
http://stackoverflow.com/questions/33637740/should-i-use-one-or-several-action-types-to-represent-this-async-action/33816695
http://stackoverflow.com/questions/35406707/do-events-and-actions-have-a-11-relationship-in-redux/35410524
http://stackoverflow.com/questions/33220776/should-actions-like-showing-hiding-loading-screens-be-handled-by-reducers-to-rel/33226443#33226443
https://twitter.com/dan_abramov/status/800310164792414208

Redux	FAQ:	Immutable	Data

Table	of	Contents
What	are	the	benefits	of	immutability?
Why	is	immutability	required	by	Redux?
Why	does	Redux’s	use	of	shallow	equality	checking	require	immutability?

How	do	Shallow	and	Deep	Equality	Checking	differ?
How	does	Redux	use	shallow	equality	checking?
How	does		combineReducers		use	shallow	equality	checking?
How	does	React-Redux	use	shallow	equality	checking?
How	does	React-Redux	use	shallow	equality	checking	to	determine	whether	a	component	needs	re-
rendering?
Why	will	shallow	equality	checking	not	work	with	mutable	objects?
Does	shallow	equality	checking	with	a	mutable	object	cause	problems	with	Redux?
Why	does	a	reducer	mutating	the	state	prevent	React-Redux	from	re-rendering	a	wrapped	component?
Why	does	a	selector	mutating	and	returning	a	persistent	object	to		mapStateToProps		prevent	React-Redux
from	re-rendering	a	wrapped	component?
How	does	immutability	enable	a	shallow	check	to	detect	object	mutations?
How	can	immutability	in	your	reducers	cause	components	to	render	unnecessarily?
How	can	immutability	in	mapStateToProps	cause	components	to	render	unnecessarily?

What	approaches	are	there	for	handling	data	immutability?	Do	I	have	to	use	Immutable.JS?
What	are	the	issues	with	using	JavaScript	for	immutable	operations?

What	are	the	benefits	of	immutability?
Immutability	can	bring	increased	performance	to	your	app,	and	leads	to	simpler	programming	and	debugging,	as	data
that	never	changes	is	easier	to	reason	about	than	data	that	is	free	to	be	changed	arbitrarily	throughout	your	app.

In	particular,	immutability	in	the	context	of	a	Web	app	enables	sophisticated	change	detection	techniques	to	be
implemented	simply	and	cheaply,	ensuring	the	computationally	expensive	process	of	updating	the	DOM	occurs	only
when	it	absolutely	has	to	(a	cornerstone	of	React’s	performance	improvements	over	other	libraries).

Further	information

Articles

Introduction	to	Immutable.js	and	Functional	Programming	Concepts
JavaScript	Immutability	presentation	(PDF	-	see	slide	12	for	benefits)
Immutable.js	-	Immutable	Collections	for	JavaScript
React:	Optimizing	Performance
JavaScript	Application	Architecture	On	The	Road	To	2015

Why	is	immutability	required	by	Redux?
Both	Redux	and	React-Redux	employ	shallow	equality	checking.	In	particular:	-	Redux's		combineReducers		utility
shallowly	checks	for	reference	changes	caused	by	the	reducers	that	it	calls.	-	React-Redux's		connect		method
generates	components	that	shallowly	check	reference	changes	to	the	root	state,	and	the	return	values	from	the

Immutable	Data

230

https://auth0.com/blog/intro-to-immutable-js/
https://www.jfokus.se/jfokus16/preso/JavaScript-Immutability--Dont-Go-Changing.pdf
https://facebook.github.io/immutable-js/#the-case-for-immutability
https://facebook.github.io/react/docs/optimizing-performance.html
https://medium.com/google-developers/javascript-application-architecture-on-the-road-to-2015-d8125811101b#.djje0rfys

	mapStateToProps		function	to	see	if	the	wrapped	components	actually	need	to	re-render.	Such	shallow	checking
requires	immutability	to	function	correctly.
Immutable	data	management	ultimately	makes	data	handling	safer.
Time-travel	debugging	requires	that	reducers	be	pure	functions	with	no	side	effects,	so	that	you	can	correctly
jump	between	different	states.

Further	Information

Documentation

Recipes:	Prerequisite	Reducer	Concepts

Discussions

Reddit:	Why	Redux	Needs	Reducers	To	Be	Pure	Functions

Why	does	Redux’s	use	of	shallow	equality	checking	require
immutability?
Redux's	use	of	shallow	equality	checking	requires	immutability	if	any	connected	components	are	to	be	updated
correctly.	To	see	why,	we	need	to	understand	the	difference	between	shallow	and	deep	equality	checking	in
JavaScript.

How	do	shallow	and	deep	equality	checking	differ?

Shallow	equality	checking	(or	reference	equality)	simply	checks	that	two	different	variables	reference	the	same	object;
in	contrast,	deep	equality	checking	(or	value	equality)	must	check	every	value	of	two	objects'	properties.

A	shallow	equality	check	is	therefore	as	simple	(and	as	fast)	as		a	===	b	,	whereas	a	deep	equality	check	involves	a
recursive	traversal	through	the	properties	of	two	objects,	comparing	the	value	of	each	property	at	each	step.

It's	for	this	improvement	in	performance	that	Redux	uses	shallow	equality	checking.

Further	Information

Articles

Pros	and	Cons	of	using	immutability	with	React.js

How	does	Redux	use	shallow	equality	checking?

Redux	uses	shallow	equality	checking	in	its		combineReducers		function	to	return	either	a	new	mutated	copy	of	the	root
state	object,	or,	if	no	mutations	have	been	made,	the	current	root	state	object.

Further	Information

Documentation

API:	combineReducers

How	does		combineReducers		use	shallow	equality	checking?

The	suggested	structure	for	a	Redux	store	is	to	split	the	state	object	into	multiple	"slices"	or	"domains"	by	key,	and
provide	a	separate	reducer	function	to	manage	each	individual	data	slice.

Immutable	Data

231

https://www.reddit.com/r/reactjs/comments/5ecqqv/why_redux_need_reducers_to_be_pure_functions/dacmmjh/?context=3
http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/

	combineReducers		makes	working	with	this	style	of	structure	easier	by	taking	a		reducers		argument	that’s	defined	as	a
hash	table	comprising	a	set	of	key/value	pairs,	where	each	key	is	the	name	of	a	state	slice,	and	the	corresponding
value	is	the	reducer	function	that	will	act	on	it.

So,	for	example,	if	your	state	shape	is		{	todos,	counter	}	,	the	call	to		combineReducers		would	be:

combineReducers({	todos:	myTodosReducer,	counter:	myCounterReducer	})

where:

the	keys		todos		and		counter		each	refer	to	a	separate	state	slice;
the	values		myTodosReducer		and		myCounterReducer		are	reducer	functions,	with	each	acting	on	the	state	slice
identified	by	the	respective	key.

	combineReducers		iterates	through	each	of	these	key/value	pairs.	For	each	iteration,	it:

creates	a	reference	to	the	current	state	slice	referred	to	by	each	key;
calls	the	appropriate	reducer	and	passes	it	the	slice;
creates	a	reference	to	the	possibly-mutated	state	slice	that's	returned	by	the	reducer.

As	it	continues	through	the	iterations,		combineReducers		will	construct	a	new	state	object	with	the	state	slices	returned
from	each	reducer.	This	new	state	object	may	or	may	not	be	different	from	the	current	state	object.	It	is	here	that
	combineReducers		uses	shallow	equality	checking	to	determine	whether	the	state	has	changed.

Specifically,	at	each	stage	of	the	iteration,		combineReducers		performs	a	shallow	equality	check	on	the	current	state
slice	and	the	state	slice	returned	from	the	reducer.	If	the	reducer	returns	a	new	object,	the	shallow	equality	check	will
fail,	and		combineReducers		will	set	a		hasChanged		flag	to	true.

After	the	iterations	have	completed,		combineReducers		will	check	the	state	of	the		hasChanged		flag.	If	it’s	true,	the
newly-constructed	state	object	will	be	returned.	If	it’s	false,	the	current	state	object	is	returned.

This	is	worth	emphasizing:	If	the	reducers	all	return	the	same		state		object	passed	to	them,	then		combineReducers	
will	return	the	current	root	state	object,	not	the	newly	updated	one.

Further	Information

Documentation

API:	combineReducers
Redux	FAQ	-	How	do	I	share	state	between	two	reducers?	do	I	have	to	use		combineReducers	?

Video

Egghead.io:	Redux:	Implementing	combineReducers()	from	Scratch

How	does	React-Redux	use	shallow	equality	checking?

React-Redux	uses	shallow	equality	checking	to	determine	whether	the	component	it’s	wrapping	needs	to	be	re-
rendered.

To	do	this,	it	assumes	that	the	wrapped	component	is	pure;	that	is,	that	the	component	will	produce	the	same	results
given	the	same	props	and	state.

By	assuming	the	wrapped	component	is	pure,	it	need	only	check	whether	the	root	state	object	or	the	values	returned
from		mapStateToProps		have	changed.	If	they	haven’t,	the	wrapped	component	does	not	need	re-rendering.

It	detects	a	change	by	keeping	a	reference	to	the	root	state	object,	and	a	reference	to	each	value	in	the	props	object
that's	returned	from	the		mapStateToProps		function.

Immutable	Data

232

https://egghead.io/lessons/javascript-redux-implementing-combinereducers-from-scratch
https://react-redux.js.org/troubleshooting#my-views-aren-t-updating-when-something-changes-outside-of-redux

It	then	runs	a	shallow	equality	check	on	its	reference	to	the	root	state	object	and	the	state	object	passed	to	it,	and	a
separate	series	of	shallow	checks	on	each	reference	to	the	props	object’s	values	and	those	that	are	returned	from
running	the		mapStateToProps		function	again.

Further	Information

Documentation

React-Redux	Bindings

Articles

API:	React-Redux’s	connect	function	and		mapStateToProps	
Redux	FAQ:	Why	isn't	my	component	re-rendering,	or	my		mapStateToProps		running?

Why	does	React-Redux	shallowly	check	each	value	within	the	props	object
returned	from		mapStateToProp	?

React-Redux	performs	a	shallow	equality	check	on	each	value	within	the	props	object,	not	on	the	props	object	itself.

It	does	so	because	the	props	object	is	actually	a	hash	of	prop	names	and	their	values	(or	selector	functions	that	are
used	to	retrieve	or	generate	the	values),	such	as	in	this	example:

function	mapStateToProps(state)	{

		return	{

				todos:	state.todos,	//	prop	value

				visibleTodos:	getVisibleTodos(state)	//	selector

		}

}

export	default	connect(mapStateToProps)(TodoApp)

As	such,	a	shallow	equality	check	of	the	props	object	returned	from	repeated	calls	to		mapStateToProps		would	always
fail,	as	a	new	object	would	be	returned	each	time.

React-Redux	therefore	maintains	separate	references	to	each	value	in	the	returned	props	object.

Further	Information

Articles

React.js	pure	render	performance	anti-pattern

How	does	React-Redux	use	shallow	equality	checking	to	determine	whether
a	component	needs	re-rendering?

Each	time	React-Redux’s		connect		function	is	called,	it	will	perform	a	shallow	equality	check	on	its	stored	reference	to
the	root	state	object,	and	the	current	root	state	object	passed	to	it	from	the	store.	If	the	check	passes,	the	root	state
object	has	not	been	updated,	and	so	there	is	no	need	to	re-render	the	component,	or	even	call		mapStateToProps	.

If	the	check	fails,	however,	the	root	state	object	has	been	updated,	and	so		connect		will	call		mapStateToProps	to	see	if
the	props	for	the	wrapped	component	have	been	updated.

It	does	this	by	performing	a	shallow	equality	check	on	each	value	within	the	object	individually,	and	will	only	trigger	a
re-render	if	one	of	those	checks	fails.

In	the	example	below,	if		state.todos		and	the	value	returned	from		getVisibleTodos()		do	not	change	on	successive
calls	to		connect	,	then	the	component	will	not	re-render	.

Immutable	Data

233

https://react-redux.js.org
https://react-redux.js.org/using-react-redux/connect-mapstate
https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f#.gh07cm24f

function	mapStateToProps(state)	{

		return	{

				todos:	state.todos,	//	prop	value

				visibleTodos:	getVisibleTodos(state)	//	selector

		}

}

export	default	connect(mapStateToProps)(TodoApp)

Conversely,	in	this	next	example	(below),	the	component	will	always	re-render,	as	the	value	of		todos		is	always	a	new
object,	regardless	of	whether	or	not	its	values	change:

//	AVOID	-	will	always	cause	a	re-render

function	mapStateToProps(state)	{

		return	{

				//	todos	always	references	a	newly-created	object

				todos:	{

						all:	state.todos,

						visibleTodos:	getVisibleTodos(state)

				}

		}

}

export	default	connect(mapStateToProps)(TodoApp)

If	the	shallow	equality	check	fails	between	the	new	values	returned	from		mapStateToProps		and	the	previous	values
that	React-Redux	kept	a	reference	to,	then	a	re-rendering	of	the	component	will	be	triggered.

Further	Information

Articles

Practical	Redux,	Part	6:	Connected	Lists,	Forms,	and	Performance
React.js	Pure	Render	Performance	Anti-Pattern
High	Performance	Redux	Apps

Discussions

#1816:	Component	connected	to	state	with		mapStateToProps	
#300:	Potential	connect()	optimization

Why	will	shallow	equality	checking	not	work	with	mutable	objects?

Shallow	equality	checking	cannot	be	used	to	detect	if	a	function	mutates	an	object	passed	into	it	if	that	object	is
mutable.

This	is	because	two	variables	that	reference	the	same	object	will	always	be	equal,	regardless	of	whether	the	object’s
values	changes	or	not,	as	they're	both	referencing	the	same	object.	Thus,	the	following	will	always	return	true:

function	mutateObj(obj)	{

		obj.key	=	'newValue'

		return	obj

}

const	param	=	{	key:	'originalValue'	}

const	returnVal	=	mutateObj(param)

param	===	returnVal

//>	true

Immutable	Data

234

http://blog.isquaredsoftware.com/2017/01/practical-redux-part-6-connected-lists-forms-and-performance/
https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f#.sb708slq6
http://somebody32.github.io/high-performance-redux/
https://github.com/reduxjs/redux/issues/1816
https://github.com/reduxjs/react-redux/issues/300

The	shallow	check	of		param		and		returnValue		simply	checks	whether	both	variables	reference	the	same	object,
which	they	do.	mutateObj()		may	return	a	mutated	version	of		obj	,	but	it's	still	the	same	object	as	that	passed	in.	The
fact	that	its	values	have	been	changed	within		mutateObj		matters	not	at	all	to	a	shallow	check.

Further	Information

Articles

Pros	and	Cons	of	using	immutability	with	React.js

Does	shallow	equality	checking	with	a	mutable	object	cause	problems	with
Redux?

Shallow	equality	checking	with	a	mutable	object	will	not	cause	problems	with	Redux,	but	it	will	cause	problems	with
libraries	that	depend	on	the	store,	such	as	React-Redux.

Specifically,	if	the	state	slice	passed	to	a	reducer	by		combineReducers		is	a	mutable	object,	the	reducer	can	modify	it
directly	and	return	it.

If	it	does,	the	shallow	equality	check	that		combineReducers		performs	will	always	pass,	as	the	values	of	the	state	slice
returned	by	the	reducer	may	have	been	mutated,	but	the	object	itself	has	not	-	it’s	still	the	same	object	that	was
passed	to	the	reducer.

Accordingly,		combineReducers		will	not	set	its		hasChanged		flag,	even	though	the	state	has	changed.	If	none	of	the	other
reducers	return	a	new,	updated	state	slice,	the		hasChanged		flag	will	remain	set	to	false,	causing		combineReducers		to
return	the	existing	root	state	object.

The	store	will	still	be	updated	with	the	new	values	for	the	root	state,	but	because	the	root	state	object	itself	is	still	the
same	object,	libraries	that	bind	to	Redux,	such	as	React-Redux,	will	not	be	aware	of	the	state’s	mutation,	and	so	will
not	trigger	a	wrapped	component’s	re-rendering.

Further	Information

Documentation

Recipes:	Immutable	Update	Patterns
Troubleshooting:	Never	mutate	reducer	arguments

Why	does	a	reducer	mutating	the	state	prevent	React-Redux	from	re-
rendering	a	wrapped	component?

If	a	Redux	reducer	directly	mutates,	and	returns,	the	state	object	passed	into	it,	the	values	of	the	root	state	object	will
change,	but	the	object	itself	will	not.

Because	React-Redux	performs	a	shallow	check	on	the	root	state	object	to	determine	if	its	wrapped	components	need
re-rendering	or	not,	it	will	not	be	able	to	detect	the	state	mutation,	and	so	will	not	trigger	a	re-rendering.

Further	Information

Documentation

Troubleshooting:	My	views	aren’t	updating	when	something	changes	outside	of	Redux

Immutable	Data

235

http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/
https://react-redux.js.org/troubleshooting#my-views-aren-t-updating-when-something-changes-outside-of-redux

Why	does	a	selector	mutating	and	returning	a	persistent	object	to
	mapStateToProps		prevent	React-Redux	from	re-rendering	a	wrapped
component?

If	one	of	the	values	of	the	props	object	returned	from		mapStateToProps		is	an	object	that	persists	across	calls	to
	connect		(such	as,	potentially,	the	root	state	object),	yet	is	directly	mutated	and	returned	by	a	selector	function,	React-
Redux	will	not	be	able	to	detect	the	mutation,	and	so	will	not	trigger	a	re-render	of	the	wrapped	component.

As	we’ve	seen,	the	values	in	the	mutable	object	returned	by	the	selector	function	may	have	changed,	but	the	object
itself	has	not,	and	shallow	equality	checking	only	compares	the	objects	themselves,	not	their	values.

For	example,	the	following		mapStateToProps		function	will	never	trigger	a	re-render:

//	State	object	held	in	the	Redux	store

const	state	=	{

		user:	{

				accessCount:	0,

				name:	'keith'

		}

}

//	Selector	function

const	getUser	=	state	=>	{

		++state.user.accessCount	//	mutate	the	state	object

		return	state

}

//	mapStateToProps

const	mapStateToProps	=	state	=>	({

		//	The	object	returned	from	getUser()	is	always

		//	the	same	object,	so	this	wrapped

		//	component	will	never	re-render,	even	though	it's	been

		//	mutated

		userRecord:	getUser(state)

})

const	a	=	mapStateToProps(state)

const	b	=	mapStateToProps(state)

a.userRecord	===	b.userRecord

//>	true

Note	that,	conversely,	if	an	immutable	object	is	used,	the	component	may	re-render	when	it	should	not.

Further	Information

Articles

Practical	Redux,	Part	6:	Connected	Lists,	Forms,	and	Performance

Discussions

#1948:	Is	getMappedItems	an	anti-pattern	in	mapStateToProps?

How	does	immutability	enable	a	shallow	check	to	detect	object	mutations?

If	an	object	is	immutable,	any	changes	that	need	to	be	made	to	it	within	a	function	must	be	made	to	a	copy	of	the
object.

This	mutated	copy	is	a	separate	object	from	that	passed	into	the	function,	and	so	when	it	is	returned,	a	shallow	check
will	identify	it	as	being	a	different	object	from	that	passed	in,	and	so	will	fail.

Immutable	Data

236

http://blog.isquaredsoftware.com/2017/01/practical-redux-part-6-connected-lists-forms-and-performance/
https://github.com/reduxjs/redux/issues/1948

Further	Information

Articles

Pros	and	Cons	of	using	immutability	with	React.js

How	can	immutability	in	your	reducers	cause	components	to	render
unnecessarily?

You	cannot	mutate	an	immutable	object;	instead,	you	must	mutate	a	copy	of	it,	leaving	the	original	intact.

That’s	perfectly	OK	when	you	mutate	the	copy,	but	in	the	context	of	a	reducer,	if	you	return	a	copy	that	hasn’t	been
mutated,	Redux’s		combineReducers		function	will	still	think	that	the	state	needs	to	be	updated,	as	you're	returning	an
entirely	different	object	from	the	state	slice	object	that	was	passed	in.

	combineReducers		will	then	return	this	new	root	state	object	to	the	store.	The	new	object	will	have	the	same	values	as
the	current	root	state	object,	but	because	it's	a	different	object,	it	will	cause	the	store	to	be	updated,	which	will
ultimately	cause	all	connected	components	to	be	re-rendered	unnecessarily.

To	prevent	this	from	happening,	you	must	always	return	the	state	slice	object	that’s	passed	into	a	reducer	if	the
reducer	does	not	mutate	the	state.

Further	Information

Articles

React.js	pure	render	performance	anti-pattern
Building	Efficient	UI	with	React	and	Redux

How	can	immutability	in		mapStateToProps		cause	components	to	render
unnecessarily?

Certain	immutable	operations,	such	as	an	Array	filter,	will	always	return	a	new	object,	even	if	the	values	themselves
have	not	changed.

If	such	an	operation	is	used	as	a	selector	function	in		mapStateToProps	,	the	shallow	equality	check	that	React-Redux
performs	on	each	value	in	the	props	object	that’s	returned	will	always	fail,	as	the	selector	is	returning	a	new	object
each	time.

As	such,	even	though	the	values	of	that	new	object	have	not	changed,	the	wrapped	component	will	always	be	re-
rendered,

For	example,	the	following	will	always	trigger	a	re-render:

//	A	JavaScript	array's	'filter'	method	treats	the	array	as	immutable,

//	and	returns	a	filtered	copy	of	the	array.

const	getVisibleTodos	=	todos	=>	todos.filter(t	=>	!t.completed)

const	state	=	{

		todos:	[

				{

						text:	'do	todo	1',

						completed:	false

				},

				{

						text:	'do	todo	2',

						completed:	true

				}

]

}

Immutable	Data

237

http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/
https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f#.5hmnwygsy
https://www.toptal.com/react/react-redux-and-immutablejs

const	mapStateToProps	=	state	=>	({

		//	getVisibleTodos()	always	returns	a	new	array,	and	so	the

		//	'visibleToDos'	prop	will	always	reference	a	different	array,

		//	causing	the	wrapped	component	to	re-render,	even	if	the	array's

		//	values	haven't	changed

		visibleToDos:	getVisibleTodos(state.todos)

})

const	a	=	mapStateToProps(state)

//		Call	mapStateToProps(state)	again	with	exactly	the	same	arguments

const	b	=	mapStateToProps(state)

a.visibleToDos

//>	{	"completed":	false,	"text":	"do	todo	1"	}

b.visibleToDos

//>	{	"completed":	false,	"text":	"do	todo	1"	}

a.visibleToDos	===	b.visibleToDos

//>	false

Note	that,	conversely,	if	the	values	in	your	props	object	refer	to	mutable	objects,	your	component	may	not	render
when	it	should.

Further	Information

Articles

React.js	pure	render	performance	anti-pattern
Building	Efficient	UI	with	React	and	Redux
ImmutableJS:	worth	the	price?

What	approaches	are	there	for	handling	data	immutability?
Do	I	have	to	use	Immutable.JS?
You	do	not	need	to	use	Immutable.JS	with	Redux.	Plain	JavaScript,	if	written	correctly,	is	perfectly	capable	of
providing	immutability	without	having	to	use	an	immutable-focused	library.

However,	guaranteeing	immutability	with	JavaScript	is	difficult,	and	it	can	be	easy	to	mutate	an	object	accidentally,
causing	bugs	in	your	app	that	are	extremely	difficult	to	locate.	For	this	reason,	using	an	immutable	update	utility	library
such	as	Immutable.JS	can	significantly	improve	the	reliability	of	your	app,	and	make	your	app’s	development	much
easier.

Further	Information

Discussions

#1185:	Question:	Should	I	use	immutable	data	structures?
Introduction	to	Immutable.js	and	Functional	Programming	Concepts

What	are	the	issues	with	using	plain	JavaScript	for
immutable	operations?
JavaScript	was	never	designed	to	provide	guaranteed	immutable	operations.	Accordingly,	there	are	several	issues
you	need	to	be	aware	of	if	you	choose	to	use	it	for	your	immutable	operations	in	your	Redux	app.

Immutable	Data

238

https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f#.b8bpx1ncj
https://www.toptal.com/react/react-redux-and-immutablejs
https://medium.com/@AlexFaunt/immutablejs-worth-the-price-66391b8742d4#.a3alci2g8
https://github.com/reduxjs/redux/issues/1422
https://auth0.com/blog/intro-to-immutable-js/

Accidental	Object	Mutation

With	JavaScript,	you	can	accidentally	mutate	an	object	(such	as	the	Redux	state	tree)	quite	easily	without	realizing	it.
For	example,	updating	deeply	nested	properties,	creating	a	new	reference	to	an	object	instead	of	a	new	object,	or
performing	a	shallow	copy	rather	than	a	deep	copy,	can	all	lead	to	inadvertent	object	mutations,	and	can	trip	up	even
the	most	experienced	JavaScript	coder.

To	avoid	these	issues,	ensure	you	follow	the	recommended	immutable	update	patterns	for	ES6.

Verbose	Code

Updating	complex	nested	state	trees	can	lead	to	verbose	code	that	is	tedious	to	write	and	difficult	to	debug.

Poor	Performance

Operating	on	JavaScript	objects	and	arrays	in	an	immutable	way	can	be	slow,	particularly	as	your	state	tree	grows
larger.

Remember,	to	change	an	immutable	object,	you	must	mutate	a	copy	of	it,	and	copying	large	objects	can	be	slow	as
every	property	must	be	copied.

In	contrast,	immutable	libraries	such	as	Immutable.JS	can	employ	sophisticated	optimization	techniques	such	as
structural	sharing	,	which	effectively	returns	a	new	object	that	reuses	much	of	the	existing	object	being	copied	from.

For	copying	very	large	objects,	plain	JavaScript	can	be	over	100	times	slower	than	an	optimized	immutable	library.

Further	Information

Documentation

Immutable	Update	Patterns	for	ES6

Articles

Immutable.js,	persistent	data	structures	and	structural	sharing
A	deep	dive	into	Clojure’s	data	structures
Introduction	to	Immutable.js	and	Functional	Programming	Concepts
JavaScript	and	Immutability
Immutable	Javascript	using	ES6	and	beyond
Pros	and	Cons	of	using	immutability	with	React.js	-	React	Kung	Fu

Immutable	Data

239

http://www.slideshare.net/mohitthatte/a-deep-dive-into-clojures-data-structures-euroclojure-2015
https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.z1g1ofrsi
https://medium.com/@dtinth/immutable-js-persistent-data-structures-and-structural-sharing-6d163fbd73d2#.a2jimoiaf
http://www.slideshare.net/mohitthatte/a-deep-dive-into-clojures-data-structures-euroclojure-2015
https://auth0.com/blog/intro-to-immutable-js/
http://t4d.io/javascript-and-immutability/
http://wecodetheweb.com/2016/02/12/immutable-javascript-using-es6-and-beyond/
http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/

Redux	FAQ:	Code	Structure

Table	of	Contents
What	should	my	file	structure	look	like?	How	should	I	group	my	action	creators	and	reducers	in	my	project?
Where	should	my	selectors	go?
How	should	I	split	my	logic	between	reducers	and	action	creators?	Where	should	my	“business	logic”	go?
Why	should	I	use	action	creators?
Where	should	websockets	and	other	persistent	connections	live?

Code	Structure

What	should	my	file	structure	look	like?	How	should	I	group	my	action
creators	and	reducers	in	my	project?	Where	should	my	selectors	go?

Since	Redux	is	just	a	data	store	library,	it	has	no	direct	opinion	on	how	your	project	should	be	structured.	However,
there	are	a	few	common	patterns	that	most	Redux	developers	tend	to	use:

Rails-style:	separate	folders	for	“actions”,	“constants”,	“reducers”,	“containers”,	and	“components”
Domain-style:	separate	folders	per	feature	or	domain,	possibly	with	sub-folders	per	file	type
“Ducks”:	similar	to	domain	style,	but	explicitly	tying	together	actions	and	reducers,	often	by	defining	them	in	the
same	file

It's	generally	suggested	that	selectors	are	defined	alongside	reducers	and	exported,	and	then	reused	elsewhere	(such
as	in		mapStateToProps		functions,	in	async	action	creators,	or	sagas)	to	colocate	all	the	code	that	knows	about	the
actual	shape	of	the	state	tree	in	the	reducer	files.

While	it	ultimately	doesn't	matter	how	you	lay	out	your	code	on	disk,	it's	important	to	remember	that	actions	and
reducers	shouldn't	be	considered	in	isolation.	It's	entirely	possible	(and	encouraged)	for	a	reducer	defined	in	one
folder	to	respond	to	an	action	defined	in	another	folder.

Further	information

Documentation

FAQ:	Actions	-	"1:1	mapping	between	reducers	and	actions?"

Articles

How	to	Scale	React	Applications	(accompanying	talk:	Scaling	React	Applications)
Redux	Best	Practices
Rules	For	Structuring	(Redux)	Applications
A	Better	File	Structure	for	React/Redux	Applications
Organizing	Large	React	Applications
Four	Strategies	for	Organizing	Code
Encapsulating	the	Redux	State	Tree
Redux	Reducer/Selector	Asymmetry
Modular	Reducers	and	Selectors
My	journey	towards	a	maintainable	project	structure	for	React/Redux
React/Redux	Links:	Architecture	-	Project	File	Structure

Code	Structure

240

https://www.smashingmagazine.com/2016/09/how-to-scale-react-applications/
https://vimeo.com/168648012
https://medium.com/lexical-labs-engineering/redux-best-practices-64d59775802e
http://jaysoo.ca/2016/02/28/organizing-redux-application/
http://marmelab.com/blog/2015/12/17/react-directory-structure.html
http://engineering.kapost.com/2016/01/organizing-large-react-applications/
https://medium.com/@msandin/strategies-for-organizing-code-2c9d690b6f33
http://randycoulman.com/blog/2016/09/13/encapsulating-the-redux-state-tree/
http://randycoulman.com/blog/2016/09/20/redux-reducer-selector-asymmetry/
http://randycoulman.com/blog/2016/09/27/modular-reducers-and-selectors/
https://medium.com/@mmazzarolo/my-journey-toward-a-maintainable-project-structure-for-react-redux-b05dfd999b5
https://github.com/markerikson/react-redux-links/blob/master/react-redux-architecture.md#project-file-structure

Discussions

#839:	Emphasize	defining	selectors	alongside	reducers
#943:	Reducer	querying
React	Boilerplate	#27:	Application	Structure
Stack	Overflow:	How	to	structure	Redux	components/containers
Twitter:	There	is	no	ultimate	file	structure	for	Redux

How	should	I	split	my	logic	between	reducers	and	action	creators?	Where
should	my	“business	logic”	go?

There's	no	single	clear	answer	to	exactly	what	pieces	of	logic	should	go	in	a	reducer	or	an	action	creator.	Some
developers	prefer	to	have	“fat”	action	creators,	with	“thin”	reducers	that	simply	take	the	data	in	an	action	and	blindly
merge	it	into	the	corresponding	state.	Others	try	to	emphasize	keeping	actions	as	small	as	possible,	and	minimize	the
usage	of		getState()		in	an	action	creator.	(For	purposes	of	this	question,	other	async	approaches	such	as	sagas	and
observables	fall	in	the	"action	creator"	category.)

There	are	some	potential	benefits	from	putting	more	logic	into	your	reducers.	It's	likely	that	the	action	types	would	be
more	semantic	and	more	meaningful	(such	as		"USER_UPDATED"		instead	of		"SET_STATE").	In	addition,	having	more
logic	in	reducers	means	that	more	functionality	will	be	affected	by	time	travel	debugging.

This	comment	sums	up	the	dichotomy	nicely:

Now,	the	problem	is	what	to	put	in	the	action	creator	and	what	in	the	reducer,	the	choice	between	fat	and	thin
action	objects.	If	you	put	all	the	logic	in	the	action	creator,	you	end	up	with	fat	action	objects	that	basically
declare	the	updates	to	the	state.	Reducers	become	pure,	dumb,	add-this,	remove	that,	update	these	functions.
They	will	be	easy	to	compose.	But	not	much	of	your	business	logic	will	be	there.	If	you	put	more	logic	in	the
reducer,	you	end	up	with	nice,	thin	action	objects,	most	of	your	data	logic	in	one	place,	but	your	reducers	are
harder	to	compose	since	you	might	need	info	from	other	branches.	You	end	up	with	large	reducers	or	reducers
that	take	additional	arguments	from	higher	up	in	the	state.

Find	the	balance	between	these	two	extremes,	and	you	will	master	Redux.

Further	information

Articles

Where	do	I	put	my	business	logic	in	a	React/Redux	application?
How	to	Scale	React	Applications
The	Tao	of	Redux,	Part	2	-	Practice	and	Philosophy.	Thick	and	thin	reducers.

Discussions

How	putting	too	much	logic	in	action	creators	could	affect	debugging
#384:	The	more	that's	in	a	reducer,	the	more	you	can	replay	via	time	travel
#1165:	Where	to	put	business	logic	/	validation?
#1171:	Recommendations	for	best	practices	regarding	action-creators,	reducers,	and	selectors
Stack	Overflow:	Accessing	Redux	state	in	an	action	creator?
#2796:	Gaining	clarity	on	"business	logic"
Twitter:	Moving	away	from	unclear	terminology...

Why	should	I	use	action	creators?

Code	Structure

241

https://github.com/reduxjs/redux/issues/839
https://github.com/reduxjs/redux/issues/943
https://github.com/mxstbr/react-boilerplate/issues/27
http://stackoverflow.com/questions/32634320/how-to-structure-redux-components-containers/32921576
https://twitter.com/dan_abramov/status/783428282666614784
https://medium.com/@jeffbski/where-do-i-put-my-business-logic-in-a-react-redux-application-9253ef91ce1
https://www.smashingmagazine.com/2016/09/how-to-scale-react-applications/
http://blog.isquaredsoftware.com/2017/05/idiomatic-redux-tao-of-redux-part-2/#thick-and-thin-reducers
https://github.com/reduxjs/redux/issues/384#issuecomment-127393209
https://github.com/reduxjs/redux/issues/384#issuecomment-127393209
https://github.com/reduxjs/redux/issues/1165
https://github.com/reduxjs/redux/issues/1171
http://stackoverflow.com/questions/35667249/accessing-redux-state-in-an-action-creator/35674575
https://github.com/reduxjs/redux/issues/2796#issue-289298280
https://twitter.com/FwardPhoenix/status/952971237004926977

Redux	does	not	require	action	creators.	You	are	free	to	create	actions	in	any	way	that	is	best	for	you,	including	simply
passing	an	object	literal	to		dispatch	.	Action	creators	emerged	from	the	Flux	architecture	and	have	been	adopted	by
the	Redux	community	because	they	offer	several	benefits.

Action	creators	are	more	maintainable.	Updates	to	an	action	can	be	made	in	one	place	and	applied	everywhere.	All
instances	of	an	action	are	guaranteed	to	have	the	same	shape	and	the	same	default	values.

Action	creators	are	testable.	The	correctness	of	an	inline	action	must	be	verified	manually.	Like	any	function,	tests	for
an	action	creator	can	be	written	once	and	run	automatically.

Action	creators	are	easier	to	document.	The	action	creator's	parameters	enumerate	the	action's	dependencies.	And
centralization	of	the	action	definition	provides	a	convenient	place	for	documentation	comments.	When	actions	are
written	inline,	this	information	is	harder	to	capture	and	communicate.

Action	creators	are	a	more	powerful	abstraction.	Creating	an	action	often	involves	transforming	data	or	making	AJAX
requests.	Action	creators	provide	a	uniform	interface	to	this	varied	logic.	This	abstraction	frees	a	component	to
dispatch	an	action	without	being	complicated	by	the	details	of	that	action's	creation.

Further	information

Articles

Idiomatic	Redux:	Why	use	action	creators?

Discussions

Reddit:	Redbox	-	Redux	action	creation	made	simple

Where	should	websockets	and	other	persistent	connections	live?

Middleware	are	the	right	place	for	persistent	connections	like	websockets	in	a	Redux	app,	for	several	reasons:

Middleware	exist	for	the	lifetime	of	the	application
Like	with	the	store	itself,	you	probably	only	need	a	single	instance	of	a	given	connection	that	the	whole	app	can
use
Middleware	can	see	all	dispatched	actions	and	dispatch	actions	themselves.	This	means	a	middleware	can	take
dispatched	actions	and	turn	those	into	messages	sent	over	the	websocket,	and	dispatch	new	actions	when	a
message	is	received	over	the	websocket.
A	websocket	connection	instance	isn't	serializable,	so	it	doesn't	belong	in	the	store	state	itself

See	this	example	that	shows	how	a	socket	middleware	might	dispatch	and	respond	to	Redux	actions.

There's	many	existing	middleware	for	websockets	and	other	similar	connections	-	see	the	link	below.

Libraries

Middleware:	Socket	and	Adapters

Code	Structure

242

https://facebook.github.io/react/blog/2014/07/30/flux-actions-and-the-dispatcher.html#actions-and-actioncreators
http://blog.isquaredsoftware.com/2016/10/idiomatic-redux-why-use-action-creators/
https://www.reddit.com/r/reactjs/comments/54k8js/redbox_redux_action_creation_made_simple/d8493z1/?context=4
https://gist.github.com/markerikson/3df1cf5abbac57820a20059287b4be58
https://github.com/markerikson/redux-ecosystem-links/blob/master/middleware-sockets-adapters.md

Redux	FAQ:	Performance

Table	of	Contents
How	well	does	Redux	“scale”	in	terms	of	performance	and	architecture?
Won't	calling	“all	my	reducers”	for	each	action	be	slow?
Do	I	have	to	deep-clone	my	state	in	a	reducer?	Isn't	copying	my	state	going	to	be	slow?
How	can	I	reduce	the	number	of	store	update	events?
Will	having	“one	state	tree”	cause	memory	problems?	Will	dispatching	many	actions	take	up	memory?
Will	caching	remote	data	cause	memory	problems?

Performance

How	well	does	Redux	“scale”	in	terms	of	performance	and	architecture?

While	there's	no	single	definitive	answer	to	this,	most	of	the	time	this	should	not	be	a	concern	in	either	case.

The	work	done	by	Redux	generally	falls	into	a	few	areas:	processing	actions	in	middleware	and	reducers	(including
object	duplication	for	immutable	updates),	notifying	subscribers	after	actions	are	dispatched,	and	updating	UI
components	based	on	the	state	changes.	While	it's	certainly	possible	for	each	of	these	to	become	a	performance
concern	in	sufficiently	complex	situations,	there's	nothing	inherently	slow	or	inefficient	about	how	Redux	is
implemented.	In	fact,	React	Redux	in	particular	is	heavily	optimized	to	cut	down	on	unnecessary	re-renders,	and
React-Redux	v5	shows	noticeable	improvements	over	earlier	versions.

Redux	may	not	be	as	efficient	out	of	the	box	when	compared	to	other	libraries.	For	maximum	rendering	performance
in	a	React	application,	state	should	be	stored	in	a	normalized	shape,	many	individual	components	should	be
connected	to	the	store	instead	of	just	a	few,	and	connected	list	components	should	pass	item	IDs	to	their	connected
child	list	items	(allowing	the	list	items	to	look	up	their	own	data	by	ID).	This	minimizes	the	overall	amount	of	rendering
to	be	done.	Use	of	memoized	selector	functions	is	also	an	important	performance	consideration.

As	for	architecture,	anecdotal	evidence	is	that	Redux	works	well	for	varying	project	and	team	sizes.	Redux	is	currently
used	by	hundreds	of	companies	and	thousands	of	developers,	with	several	hundred	thousand	monthly	installations
from	NPM.	One	developer	reported:

for	scale,	we	have	~500	action	types,	~400	reducer	cases,	~150	components,	5	middlewares,	~200	actions,
~2300	tests

Further	information

Documentation

Recipes:	Structuring	Reducers	-	Normalizing	State	Shape

Articles

How	to	Scale	React	Applications	(accompanying	talk:	Scaling	React	Applications)
High-Performance	Redux
Improving	React	and	Redux	Perf	with	Reselect
Encapsulating	the	Redux	State	Tree
React/Redux	Links:	Performance	-	Redux

Performance

243

https://www.smashingmagazine.com/2016/09/how-to-scale-react-applications/
https://vimeo.com/168648012
http://somebody32.github.io/high-performance-redux/
http://blog.rangle.io/react-and-redux-performance-with-reselect/
http://randycoulman.com/blog/2016/09/13/encapsulating-the-redux-state-tree/
https://github.com/markerikson/react-redux-links/blob/master/react-performance.md#redux-performance

Discussions

#310:	Who	uses	Redux?
#1751:	Performance	issues	with	large	collections
React	Redux	#269:	Connect	could	be	used	with	a	custom	subscribe	method
React	Redux	#407:	Rewrite	connect	to	offer	an	advanced	API
React	Redux	#416:	Rewrite	connect	for	better	performance	and	extensibility
Redux	vs	MobX	TodoMVC	Benchmark:	#1
Reddit:	What's	the	best	place	to	keep	the	initial	state?
Reddit:	Help	designing	Redux	state	for	a	single	page	app
Reddit:	Redux	performance	issues	with	a	large	state	object?
Reddit:	React/Redux	for	Ultra	Large	Scale	apps
Twitter:	Redux	scaling
Twitter:	Redux	vs	MobX	benchmark	graph	-	Redux	state	shape	matters
Stack	Overflow:	How	to	optimize	small	updates	to	props	of	nested	components?
Chat	log:	React/Redux	perf	-	updating	a	10K-item	Todo	list
Chat	log:	React/Redux	perf	-	single	connection	vs	many	connections

Won't	calling	“all	my	reducers”	for	each	action	be	slow?

It's	important	to	note	that	a	Redux	store	really	only	has	a	single	reducer	function.	The	store	passes	the	current	state
and	dispatched	action	to	that	one	reducer	function,	and	lets	the	reducer	handle	things	appropriately.

Obviously,	trying	to	handle	every	possible	action	in	a	single	function	does	not	scale	well,	simply	in	terms	of	function
size	and	readability,	so	it	makes	sense	to	split	the	actual	work	into	separate	functions	that	can	be	called	by	the	top-
level	reducer.	In	particular,	the	common	suggested	pattern	is	to	have	a	separate	sub-reducer	function	that	is
responsible	for	managing	updates	to	a	particular	slice	of	state	at	a	specific	key.	The		combineReducers()		that	comes
with	Redux	is	one	of	the	many	possible	ways	to	achieve	this.	It's	also	highly	suggested	to	keep	your	store	state	as	flat
and	as	normalized	as	possible.	Ultimately,	though,	you	are	in	charge	of	organizing	your	reducer	logic	any	way	you
want.

However,	even	if	you	happen	to	have	many	different	reducer	functions	composed	together,	and	even	with	deeply
nested	state,	reducer	speed	is	unlikely	to	be	a	problem.	JavaScript	engines	are	capable	of	running	a	very	large
number	of	function	calls	per	second,	and	most	of	your	reducers	are	probably	just	using	a		switch		statement	and
returning	the	existing	state	by	default	in	response	to	most	actions.

If	you	actually	are	concerned	about	reducer	performance,	you	can	use	a	utility	such	as	redux-ignore	or	reduxr-scoped-
reducer	to	ensure	that	only	certain	reducers	listen	to	specific	actions.	You	can	also	use	redux-log-slow-reducers	to	do
some	performance	benchmarking.

Further	information

Discussions

#912:	Proposal:	action	filter	utility
#1303:	Redux	Performance	with	Large	Store	and	frequent	updates
Stack	Overflow:	State	in	Redux	app	has	the	name	of	the	reducer
Stack	Overflow:	How	does	Redux	deal	with	deeply	nested	models?

Do	I	have	to	deep-clone	my	state	in	a	reducer?	Isn't	copying	my	state	going
to	be	slow?

Performance

244

https://github.com/reduxjs/redux/issues/310
https://github.com/reduxjs/redux/issues/1751
https://github.com/reduxjs/react-redux/issues/269
https://github.com/reduxjs/react-redux/issues/407
https://github.com/reduxjs/react-redux/pull/416
https://github.com/mweststrate/redux-todomvc/pull/1
https://www.reddit.com/r/reactjs/comments/47m9h5/whats_the_best_place_to_keep_the_initial_state/
https://www.reddit.com/r/reactjs/comments/48k852/help_designing_redux_state_for_a_single_page/
https://www.reddit.com/r/reactjs/comments/41wdqn/redux_performance_issues_with_a_large_state_object/
https://www.reddit.com/r/javascript/comments/49box8/reactredux_for_ultra_large_scale_apps/
https://twitter.com/NickPresta/status/684058236828266496
https://twitter.com/dan_abramov/status/720219615041859584
http://stackoverflow.com/questions/37264415/how-to-optimize-small-updates-to-props-of-nested-component-in-react-redux
https://gist.github.com/markerikson/53735e4eb151bc228d6685eab00f5f85
https://gist.github.com/markerikson/6056565dd65d1232784bf42b65f8b2ad
https://github.com/omnidan/redux-ignore
https://github.com/chrisdavies/reduxr-scoped-reducer
https://github.com/michaelcontento/redux-log-slow-reducers
https://github.com/reduxjs/redux/issues/912
https://github.com/reduxjs/redux/issues/1303
http://stackoverflow.com/questions/35667775/state-in-redux-react-app-has-a-property-with-the-name-of-the-reducer/35674297
http://stackoverflow.com/questions/34494866/how-does-redux-deals-with-deeply-nested-models/34495397

Immutably	updating	state	generally	means	making	shallow	copies,	not	deep	copies.	Shallow	copies	are	much	faster
than	deep	copies,	because	fewer	objects	and	fields	have	to	be	copied,	and	it	effectively	comes	down	to	moving	some
pointers	around.

In	addition,	deep	cloning	state	creates	new	references	for	every	field.	Since	the	React-Redux		connect		function	relies
on	reference	comparisons	to	determine	if	data	has	changed,	this	means	that	UI	components	will	be	forced	to	re-
render	unnecessarily	even	though	the	other	data	hasn't	meaningfully	changed.

However,	you	do	need	to	create	a	copied	and	updated	object	for	each	level	of	nesting	that	is	affected.	Although	that
shouldn't	be	particularly	expensive,	it's	another	good	reason	why	you	should	keep	your	state	normalized	and	shallow
if	possible.

Common	Redux	misconception:	you	need	to	deeply	clone	the	state.	Reality:	if	something	inside	doesn't	change,
keep	its	reference	the	same!

Further	information

Documentation

Recipes:	Structuring	Reducers	-	Prerequisite	Concepts
Recipes:	Structuring	Reducers	-	Immutable	Update	Patterns

Discussions

#454:	Handling	big	states	in	reducer
#758:	Why	can't	state	be	mutated?
#994:	How	to	cut	the	boilerplate	when	updating	nested	entities?
Twitter:	common	misconception	-	deep	cloning
Cloning	Objects	in	JavaScript

How	can	I	reduce	the	number	of	store	update	events?

Redux	notifies	subscribers	after	each	successfully	dispatched	action	(i.e.	an	action	reached	the	store	and	was
handled	by	reducers).	In	some	cases,	it	may	be	useful	to	cut	down	on	the	number	of	times	subscribers	are	called,
particularly	if	an	action	creator	dispatches	multiple	distinct	actions	in	a	row.

If	you	use	React,	note	that	you	can	improve	performance	of	multiple	synchronous	dispatches	by	wrapping	them	in
	ReactDOM.unstable_batchedUpdates()	,	but	this	API	is	experimental	and	may	be	removed	in	any	React	release	so	don't
rely	on	it	too	heavily.	Take	a	look	at	redux-batched-actions	(a	higher-order	reducer	that	lets	you	dispatch	several
actions	as	if	it	was	one	and	“unpack”	them	in	the	reducer),	redux-batched-subscribe	(a	store	enhancer	that	lets	you
debounce	subscriber	calls	for	multiple	dispatches),	or	redux-batch	(a	store	enhancer	that	handles	dispatching	an	array
of	actions	with	a	single	subscriber	notification).

Further	information

Discussions

#125:	Strategy	for	avoiding	cascading	renders
#542:	Idea:	batching	actions
#911:	Batching	actions
#1813:	Use	a	loop	to	support	dispatching	arrays
React	Redux	#263:	Huge	performance	issue	when	dispatching	hundreds	of	actions

Libraries

Redux	Addons	Catalog:	Store	-	Change	Subscriptions

Performance

245

https://github.com/reduxjs/redux/issues/454
https://github.com/reduxjs/redux/issues/758
https://github.com/reduxjs/redux/issues/994
https://twitter.com/dan_abramov/status/688087202312491008
http://www.zsoltnagy.eu/cloning-objects-in-javascript/
https://github.com/tshelburne/redux-batched-actions
https://github.com/tappleby/redux-batched-subscribe
https://github.com/manaflair/redux-batch
https://github.com/reduxjs/redux/issues/125
https://github.com/reduxjs/redux/issues/542
https://github.com/reduxjs/redux/issues/911
https://github.com/reduxjs/redux/pull/1813
https://github.com/reduxjs/react-redux/issues/263
https://github.com/markerikson/redux-ecosystem-links/blob/master/store.md#store-change-subscriptions

Will	having	“one	state	tree”	cause	memory	problems?	Will	dispatching	many
actions	take	up	memory?

First,	in	terms	of	raw	memory	usage,	Redux	is	no	different	than	any	other	JavaScript	library.	The	only	difference	is
that	all	the	various	object	references	are	nested	together	into	one	tree,	instead	of	maybe	saved	in	various
independent	model	instances	such	as	in	Backbone.	Second,	a	typical	Redux	app	would	probably	have	somewhat	less
memory	usage	than	an	equivalent	Backbone	app	because	Redux	encourages	use	of	plain	JavaScript	objects	and
arrays	rather	than	creating	instances	of	Models	and	Collections.	Finally,	Redux	only	holds	onto	a	single	state	tree
reference	at	a	time.	Objects	that	are	no	longer	referenced	in	that	tree	will	be	garbage	collected,	as	usual.

Redux	does	not	store	a	history	of	actions	itself.	However,	the	Redux	DevTools	do	store	actions	so	they	can	be
replayed,	but	those	are	generally	only	enabled	during	development,	and	not	used	in	production.

Further	information

Documentation

Docs:	Async	Actions

Discussions

Stack	Overflow:	Is	there	any	way	to	"commit"	the	state	in	Redux	to	free	memory?
Stack	Overflow:	Can	a	Redux	store	lead	to	a	memory	leak?
Stack	Overflow:	Redux	and	ALL	the	application	state
Stack	Overflow:	Memory	Usage	Concern	with	Controlled	Components
Reddit:	What's	the	best	place	to	keep	initial	state?

Will	caching	remote	data	cause	memory	problems?

The	amount	of	memory	available	to	JavaScript	applications	running	in	a	browser	is	finite.	Caching	data	will	cause
performance	problems	when	the	size	of	the	cache	approaches	the	amount	of	available	memory.	This	tends	to	be	a
problem	when	the	cached	data	is	exceptionally	large	or	the	session	is	exceptionally	long-running.	And	while	it	is	good
to	be	aware	of	the	potential	for	these	problems,	this	awareness	should	not	discourage	you	from	efficiently	caching
reasonable	amounts	of	data.

Here	are	a	few	approaches	to	caching	remote	data	efficiently:

First,	only	cache	as	much	data	as	the	user	needs.	If	your	application	displays	a	paginated	list	of	records,	you	don't
necessarily	need	to	cache	the	entire	collection.	Instead,	cache	what	is	visible	to	the	user	and	add	to	that	cache	when
the	user	has	(or	will	soon	have)	an	immediate	need	for	more	data.

Second,	cache	an	abbreviated	form	of	a	record	when	possible.	Sometimes	a	record	includes	data	that	is	not	relevant
to	the	user.	If	the	application	does	not	depend	on	this	data,	it	can	be	omitted	from	the	cache.

Third,	only	cache	a	single	copy	of	a	record.	This	is	especially	important	when	records	contain	copies	of	other	records.
Cache	a	unique	copy	for	each	record	and	replace	each	nested	copy	with	a	reference.	This	is	called	normalization.
Normalization	is	the	preferred	approach	to	storing	relational	data	for	several	reasons,	including	efficient	memory
consumption.

Further	information

Discussions

Stack	Overflow:	How	to	choose	the	Redux	state	shape	for	an	app	with	list/detail	views	and	pagination?
Twitter:	...concerns	over	having	"too	much	data	in	the	state	tree"...
Advanced	Redux	entity	normalization

Performance

246

http://stackoverflow.com/questions/35627553/is-there-any-way-to-commit-the-state-in-redux-to-free-memory/35634004
https://stackoverflow.com/questions/39943762/can-a-redux-store-lead-to-a-memory-leak/40549594#40549594
https://stackoverflow.com/questions/42489557/redux-and-all-the-application-state/42491766#42491766
https://stackoverflow.com/questions/44956071/memory-usage-concern-with-controlled-components?noredirect=1&lq=1
https://www.reddit.com/r/reactjs/comments/47m9h5/whats_the_best_place_to_keep_the_initial_state/
https://stackoverflow.com/questions/33940015/how-to-choose-the-redux-state-shape-for-an-app-with-list-detail-views-and-pagina
https://twitter.com/acemarke/status/804071531844423683
https://medium.com/@dcousineau/advanced-redux-entity-normalization-f5f1fe2aefc5

Performance

247

Redux	FAQ:	Design	Decisions

Table	of	Contents
Why	doesn't	Redux	pass	the	state	and	action	to	subscribers?
Why	doesn't	Redux	support	using	classes	for	actions	and	reducers?
Why	does	the	middleware	signature	use	currying?
Why	does	applyMiddleware	use	a	closure	for	dispatch?
Why	doesn't		combineReducers		include	a	third	argument	with	the	entire	state	when	it	calls	each	reducer?
Why	doesn't	mapDispatchToProps	allow	use	of	return	values	from		getState()		or		mapStateToProps()	?

Design	Decisions

Why	doesn't	Redux	pass	the	state	and	action	to	subscribers?

Subscribers	are	intended	to	respond	to	the	state	value	itself,	not	the	action.	Updates	to	the	state	are	processed
synchronously,	but	notifications	to	subscribers	can	be	batched	or	debounced,	meaning	that	subscribers	are	not
always	notified	with	every	action.	This	is	a	common	performance	optimization	to	avoid	repeated	re-rendering.

Batching	or	debouncing	is	possible	by	using	enhancers	to	override		store.dispatch		to	change	the	way	that
subscribers	are	notified.	Also,	there	are	libraries	that	change	Redux	to	process	actions	in	batches	to	optimize
performance	and	avoid	repeated	re-rendering:

redux-batch	allows	passing	an	array	of	actions	to		store.dispatch()		with	only	one	notification,
redux-batched-subscribe	allows	batching	of	subscribe	notifications	that	occur	as	a	result	of	dispatches.

The	intended	guarantee	is	that	Redux	eventually	calls	all	subscribers	with	the	most	recent	state	available,	but	not	that
it	always	calls	each	subscriber	for	each	action.	The	store	state	is	available	in	the	subscriber	simply	by	calling
	store.getState()	.	The	action	cannot	be	made	available	in	the	subscribers	without	breaking	the	way	that	actions
might	be	batched.

A	potential	use-case	for	using	the	action	inside	a	subscriber	--	which	is	an	unsupported	feature	--	is	to	ensure	that	a
component	only	re-renders	after	certain	kinds	of	actions.	Instead,	re-rendering	should	be	controlled	through:

1.	 the	shouldComponentUpdate	lifecycle	method
2.	 the	virtual	DOM	equality	check	(vDOMEq)
3.	 React.PureComponent
4.	 Using	React-Redux:	use	mapStateToProps	to	subscribe	components	to	only	the	parts	of	the	store	that	they	need.

Further	Information

Articles

How	can	I	reduce	the	number	of	store	update	events?

Discussions

#580:	Why	doesn't	Redux	pass	the	state	to	subscribers?
#2214:	Alternate	Proof	of	Concept:	Enhancer	Overhaul	--	more	on	debouncing

Why	doesn't	Redux	support	using	classes	for	actions	and	reducers?

Design	Decisions

248

https://github.com/manaflair/redux-batch
https://github.com/tappleby/redux-batched-subscribe
https://facebook.github.io/react/docs/react-component.html#shouldcomponentupdate
https://facebook.github.io/react/docs/optimizing-performance.html#avoid-reconciliation
https://facebook.github.io/react/docs/optimizing-performance.html#examples
https://react-redux.js.org/api#connect
https://github.com/reactjs/redux/issues/580
https://github.com/reactjs/redux/pull/2214

The	pattern	of	using	functions,	called	action	creators,	to	return	action	objects	may	seem	counterintuitive	to
programmers	with	a	lot	of	Object	Oriented	Programming	experience,	who	would	see	this	is	a	strong	use-case	for
Classes	and	instances.	Class	instances	for	action	objects	and	reducers	are	not	supported	because	class	instances
make	serialization	and	deserialization	tricky.	Deserialization	methods	like		JSON.parse(string)		will	return	a	plain	old
Javascript	object	rather	than	class	instances.

As	described	in	the	Store	FAQ,	if	you	are	okay	with	things	like	persistence	and	time-travel	debugging	not	working	as
intended,	you	are	welcome	to	put	non-serializable	items	into	your	Redux	store.

Serialization	enables	the	browser	to	store	all	actions	that	have	been	dispatched,	as	well	as	the	previous	store	states,
with	much	less	memory.	Rewinding	and	'hot	reloading'	the	store	is	central	to	the	Redux	developer	experience	and	the
function	of	Redux	DevTools.	This	also	enables	deserialized	actions	to	be	stored	on	the	server	and	re-serialized	in	the
browser	in	the	case	of	server-side	rendering	with	Redux.

Further	Information

Articles

Can	I	put	functions,	promises,	or	other	non-serializable	items	in	my	store	state?

Discussions

#1171:	Why	doesn't	Redux	use	classes	for	actions	and	reducers?

Why	does	the	middleware	signature	use	currying?

Redux	middleware	are	written	using	a	triply-nested	function	structure	that	looks	like		const	middleware	=	storeAPI	=>
next	=>	action	=>	{}	,	rather	than	a	single	function	that	looks	like		const	middleware	=	(storeAPI,	next,	action)	=>	{}	.
There's	a	few	reasons	for	this.

One	is	that	"currying"	functions	is	a	standard	functional	programming	technique,	and	Redux	was	explicitly	intended	to
use	functional	programming	principles	in	its	design.	Another	is	that	currying	functions	creates	closures	where	you	can
declare	variables	that	exist	for	the	lifetime	of	the	middleware	(which	could	be	considered	a	functional	equivalent	to
instance	variables	that	exist	for	the	lifetime	of	a	class	instance).	Finally,	it's	simply	the	approach	that	was	chosen	when
Redux	was	initially	designed.

The	curried	function	signature	of	declaring	middleware	is	deemed	unnecessary	by	some,	because	both	store	and	next
are	available	when	the	applyMiddleware	function	is	executed.	This	issue	has	been	determined	to	not	be	worth
introducing	breaking	changes,	as	there	are	now	hundreds	of	middleware	in	the	Redux	ecosystem	that	rely	on	the
existing	middleware	definition.

Further	Information

Discussions

Why	does	the	middleware	signature	use	currying?
Prior	discussions:	#55,	#534,	#784,	#922,	#1744
React	Boston	2017:	You	Might	Need	Redux	(And	Its	Ecosystem)

Why	does		applyMiddleware		use	a	closure	for		dispatch	?

	applyMiddleware		takes	the	existing	dispatch	from	the	store	and	closes	over	it	to	create	the	initial	chain	of	middlewares
that	have	been	invoked	with	an	object	that	exposes	the	getState	and	dispatch	functions,	which	enables	middlewares
that	rely	on	dispatch	during	initialization	to	run.

Design	Decisions

249

https://github.com/reactjs/redux/issues/1171#issuecomment-196819727
https://github.com/reactjs/redux/issues/1744
https://github.com/reactjs/redux/pull/784
https://github.com/reactjs/redux/issues/1744
https://github.com/reactjs/redux/pull/55
https://github.com/reactjs/redux/issues/534
https://github.com/reactjs/redux/pull/784
https://github.com/reactjs/redux/issues/922
https://github.com/reactjs/redux/issues/1744
http://blog.isquaredsoftware.com/2017/09/presentation-might-need-redux-ecosystem/
https://github.com/reactjs/redux/pull/1592

Further	Information

Discussions

Why	does	applyMiddleware	use	a	closure	for	dispatch?
See	-	#1592	and	#2097

Why	doesn't		combineReducers		include	a	third	argument	with	the	entire
state	when	it	calls	each	reducer?

	combineReducers		is	opinionated	to	encourage	splitting	reducer	logic	by	domain.	As	stated	in	Beyond
	combineReducers	,	combineReducers		is	deliberately	limited	to	handle	a	single	common	use	case:	updating	a	state	tree
that	is	a	plain	Javascript	object	by	delegating	the	work	of	updating	each	slice	of	state	to	a	specific	slice	reducer.

It's	not	immediately	obvious	what	a	potential	third	argument	to	each	reducer	should	be:	the	entire	state	tree,	some
callback	function,	some	other	part	of	the	state	tree,	etc.	If		combineReducers		doesn't	fit	your	use	case,	consider	using
libraries	like	combineSectionReducers	or	reduceReducers	for	other	options	with	deeply	nested	reducers	and	reducers
that	require	access	to	the	global	state.

If	none	of	the	published	utilities	solve	your	use	case,	you	can	always	write	a	function	yourself	that	does	just	exactly
what	you	need.

Further	information

Articles

Beyond		combineReducers	

Discussions

#1768	Allow	reducers	to	consult	global	state

Why	doesn't		mapDispatchToProps		allow	use	of	return	values	from
	getState()		or		mapStateToProps()	?

There	have	been	requests	to	use	either	the	entire		state		or	the	return	value	of		mapState		inside	of		mapDispatch	,	so
that	when	functions	are	declared	inside	of		mapDispatch	,	they	can	close	over	the	latest	returned	values	from	the	store.

This	approach	is	not	supported	in		mapDispatch		because	it	would	mean	also	calling		mapDispatch		every	time	the	store
is	updated.	This	would	cause	the	re-creation	of	functions	with	every	state	update,	thus	adding	a	lot	of	performance
overhead.

The	preferred	way	to	handle	this	use-case--needing	to	alter	props	based	on	the	current	state	and
mapDispatchToProps	functions--is	to	work	from	mergeProps,	the	third	argument	to	the	connect	function.	If	specified,	it
is	passed	the	result	of		mapStateToProps()	,		mapDispatchToProps()	,	and	the	container	component's	props.	The	plain
object	returned	from		mergeProps		will	be	passed	as	props	to	the	wrapped	component.

Further	information

Discussions

#237	Why	doesn't	mapDispatchToProps	allow	use	of	return	values	from	getState()	or	mapStateToProps()?

Design	Decisions

250

https://github.com/reactjs/redux/pull/1592
https://github.com/reactjs/redux/issues/2097
https://github.com/ryo33/combine-section-reducers
https://github.com/acdlite/reduce-reducers
https://github.com/reactjs/redux/pull/1768
https://github.com/reactjs/react-redux/issues/237

Design	Decisions

251

Redux	FAQ:	React	Redux

Table	of	Contents
Why	should	I	use	React-Redux?
Why	isn't	my	component	re-rendering,	or	my	mapStateToProps	running?
Why	is	my	component	re-rendering	too	often?
How	can	I	speed	up	my	mapStateToProps?
Why	don't	I	have	this.props.dispatch	available	in	my	connected	component?
Should	I	only	connect	my	top	component,	or	can	I	connect	multiple	components	in	my	tree?

React	Redux

Why	should	I	use	React-Redux?

Redux	itself	is	a	standalone	library	that	can	be	used	with	any	UI	layer	or	framework,	including	React,	Angular,	Vue,
Ember,	and	vanilla	JS.	Although	Redux	and	React	are	commonly	used	together,	they	are	independent	of	each	other.

If	you	are	using	Redux	with	any	kind	of	UI	framework,	you	will	normally	use	a	"UI	binding"	library	to	tie	Redux	together
with	your	UI	framework,	rather	than	directly	interacting	with	the	store	from	your	UI	code.

React-Redux	is	the	official	Redux	UI	binding	library	for	React.	If	you	are	using	Redux	and	React	together,	you
should	also	use	React-Redux	to	bind	these	two	libraries.

While	it	is	possible	to	write	Redux	store	subscription	logic	by	hand,	doing	so	would	become	very	repetitive.	In	addition,
optimizing	UI	performance	would	require	complicated	logic.

The	process	of	subscribing	to	the	store,	checking	for	updated	data,	and	triggering	a	re-render	can	be	made	more
generic	and	reusable.	A	UI	binding	library	like	React-Redux	handles	the	store	interaction	logic,	so	you	don't
have	to	write	that	code	yourself.

Overall,	React-Redux	encourages	good	React	architecture,	and	implements	complex	performance	optimizations	for
you.	It	is	also	kept	up-to-date	with	the	latest	API	changes	from	Redux	and	React.

Further	Information

Documentation

React-Redux	docs:	Why	Use	React-Redux?

Why	isn't	my	component	re-rendering,	or	my	mapStateToProps	running?

Accidentally	mutating	or	modifying	your	state	directly	is	by	far	the	most	common	reason	why	components	do	not	re-
render	after	an	action	has	been	dispatched.	Redux	expects	that	your	reducers	will	update	their	state	“immutably”,
which	effectively	means	always	making	copies	of	your	data,	and	applying	your	changes	to	the	copies.	If	you	return	the
same	object	from	a	reducer,	Redux	assumes	that	nothing	has	been	changed,	even	if	you	made	changes	to	its
contents.	Similarly,	React	Redux	tries	to	improve	performance	by	doing	shallow	equality	reference	checks	on
incoming	props	in		shouldComponentUpdate	,	and	if	all	references	are	the	same,		shouldComponentUpdate		returns		false	
to	skip	actually	updating	your	original	component.

React	Redux

252

https://react-redux.js.org/introduction/why-use-react-redux

It's	important	to	remember	that	whenever	you	update	a	nested	value,	you	must	also	return	new	copies	of	anything
above	it	in	your	state	tree.	If	you	have		state.a.b.c.d	,	and	you	want	to	make	an	update	to		d	,	you	would	also	need	to
return	new	copies	of		c	,		b	,		a	,	and		state	.	This	state	tree	mutation	diagram	demonstrates	how	a	change	deep	in	a
tree	requires	changes	all	the	way	up.

Note	that	“updating	data	immutably”	does	not	mean	that	you	must	use	Immutable.js,	although	that	is	certainly	an
option.	You	can	do	immutable	updates	to	plain	JS	objects	and	arrays	using	several	different	approaches:

Copying	objects	using	functions	like		Object.assign()		or		_.extend()	,	and	array	functions	such	as		slice()		and
	concat()	

The	array	spread	operator	in	ES6,	and	the	similar	object	spread	operator	that	is	proposed	for	a	future	version	of
JavaScript
Utility	libraries	that	wrap	immutable	update	logic	into	simpler	functions

Further	information

Documentation

Troubleshooting
React	Redux:	Troubleshooting
Recipes:	Using	the	Object	Spread	Operator
Recipes:	Structuring	Reducers	-	Prerequisite	Concepts
Recipes:	Structuring	Reducers	-	Immutable	Update	Patterns

Articles

Pros	and	Cons	of	Using	Immutability	with	React
React/Redux	Links:	Immutable	Data

Discussions

#1262:	Immutable	data	+	bad	performance
React	Redux	#235:	Predicate	function	for	updating	component
React	Redux	#291:	Should	mapStateToProps	be	called	every	time	an	action	is	dispatched?
Stack	Overflow:	Cleaner/shorter	way	to	update	nested	state	in	Redux?
Gist:	state	mutations

Why	is	my	component	re-rendering	too	often?

React	Redux	implements	several	optimizations	to	ensure	your	actual	component	only	re-renders	when	actually
necessary.	One	of	those	is	a	shallow	equality	check	on	the	combined	props	object	generated	by	the		mapStateToProps	
and		mapDispatchToProps		arguments	passed	to		connect	.	Unfortunately,	shallow	equality	does	not	help	in	cases	where
new	array	or	object	instances	are	created	each	time		mapStateToProps		is	called.	A	typical	example	might	be	mapping
over	an	array	of	IDs	and	returning	the	matching	object	references,	such	as:

const	mapStateToProps	=	state	=>	{

		return	{

				objects:	state.objectIds.map(id	=>	state.objects[id])

		}

}

Even	though	the	array	might	contain	the	exact	same	object	references	each	time,	the	array	itself	is	a	different
reference,	so	the	shallow	equality	check	fails	and	React	Redux	would	re-render	the	wrapped	component.

React	Redux

253

http://arqex.com/wp-content/uploads/2015/02/trees.png
https://facebook.github.io/immutable-js/
https://react-redux.js.org/troubleshooting
http://reactkungfu.com/2015/08/pros-and-cons-of-using-immutability-with-react-js/
https://github.com/markerikson/react-redux-links/blob/master/immutable-data.md
https://github.com/reduxjs/redux/issues/1262
https://github.com/reduxjs/react-redux/issues/235
https://github.com/reduxjs/react-redux/issues/291
http://stackoverflow.com/questions/35592078/cleaner-shorter-way-to-update-nested-state-in-redux
https://gist.github.com/amcdnl/7d93c0c67a9a44fe5761#gistcomment-1706579

The	extra	re-renders	could	be	resolved	by	saving	the	array	of	objects	into	the	state	using	a	reducer,	caching	the
mapped	array	using	Reselect,	or	implementing		shouldComponentUpdate		in	the	component	by	hand	and	doing	a	more
in-depth	props	comparison	using	a	function	such	as		_.isEqual	.	Be	careful	to	not	make	your	custom
	shouldComponentUpdate()		more	expensive	than	the	rendering	itself!	Always	use	a	profiler	to	check	your	assumptions
about	performance.

For	non-connected	components,	you	may	want	to	check	what	props	are	being	passed	in.	A	common	issue	is	having	a
parent	component	re-bind	a	callback	inside	its	render	function,	like		<Child	onClick={this.handleClick.bind(this)}	/>	.
That	creates	a	new	function	reference	every	time	the	parent	re-renders.	It's	generally	good	practice	to	only	bind
callbacks	once	in	the	parent	component's	constructor.

Further	information

Documentation

FAQ:	Performance	-	Scaling

Articles

A	Deep	Dive	into	React	Perf	Debugging
React.js	pure	render	performance	anti-pattern
Improving	React	and	Redux	Performance	with	Reselect
Encapsulating	the	Redux	State	Tree
React/Redux	Links:	React/Redux	Performance

Discussions

Stack	Overflow:	Can	a	React	Redux	app	scale	as	well	as	Backbone?

Libraries

Redux	Addons	Catalog:	DevTools	-	Component	Update	Monitoring

How	can	I	speed	up	my		mapStateToProps	?

While	React	Redux	does	work	to	minimize	the	number	of	times	that	your		mapStateToProps		function	is	called,	it's	still	a
good	idea	to	ensure	that	your		mapStateToProps		runs	quickly	and	also	minimizes	the	amount	of	work	it	does.	The
common	recommended	approach	is	to	create	memoized	“selector”	functions	using	Reselect.	These	selectors	can	be
combined	and	composed	together,	and	selectors	later	in	a	pipeline	will	only	run	if	their	inputs	have	changed.	This
means	you	can	create	selectors	that	do	things	like	filtering	or	sorting,	and	ensure	that	the	real	work	only	happens	if
needed.

Further	information

Documentation

Recipes:	Computed	Derived	Data

Articles

Improving	React	and	Redux	Performance	with	Reselect

Discussions

#815:	Working	with	Data	Structures
Reselect	#47:	Memoizing	Hierarchical	Selectors

React	Redux

254

https://github.com/reduxjs/reselect
http://benchling.engineering/deep-dive-react-perf-debugging/
https://medium.com/@esamatti/react-js-pure-render-performance-anti-pattern-fb88c101332f
http://blog.rangle.io/react-and-redux-performance-with-reselect/
http://randycoulman.com/blog/2016/09/13/encapsulating-the-redux-state-tree/
https://github.com/markerikson/react-redux-links/blob/master/react-performance.md
http://stackoverflow.com/questions/34782249/can-a-react-redux-app-really-scale-as-well-as-say-backbone-even-with-reselect
https://github.com/markerikson/redux-ecosystem-links/blob/master/devtools.md#component-update-monitoring
https://github.com/reduxjs/reselect
http://blog.rangle.io/react-and-redux-performance-with-reselect/
https://github.com/reduxjs/redux/issues/815
https://github.com/reduxjs/reselect/issues/47

Why	don't	I	have		this.props.dispatch		available	in	my	connected
component?

The		connect()		function	takes	two	primary	arguments,	both	optional.	The	first,		mapStateToProps	,	is	a	function	you
provide	to	pull	data	from	the	store	when	it	changes,	and	pass	those	values	as	props	to	your	component.	The	second,
	mapDispatchToProps	,	is	a	function	you	provide	to	make	use	of	the	store's		dispatch		function,	usually	by	creating	pre-
bound	versions	of	action	creators	that	will	automatically	dispatch	their	actions	as	soon	as	they	are	called.

If	you	do	not	provide	your	own		mapDispatchToProps		function	when	calling		connect()	,	React	Redux	will	provide	a
default	version,	which	simply	returns	the		dispatch		function	as	a	prop.	That	means	that	if	you	do	provide	your	own
function,		dispatch		is	not	automatically	provided.	If	you	still	want	it	available	as	a	prop,	you	need	to	explicitly	return	it
yourself	in	your		mapDispatchToProps		implementation.

Further	information

Documentation

React	Redux	API:	connect()

Discussions

React	Redux	#89:	can	i	wrap	multi	actionCreators	into	one	props	with	name?
React	Redux	#145:	consider	always	passing	down	dispatch	regardless	of	what	mapDispatchToProps	does
React	Redux	#255:	this.props.dispatch	is	undefined	if	using	mapDispatchToProps
Stack	Overflow:	How	to	get	simple	dispatch	from	this.props	using	connect	w/	Redux?

Should	I	only	connect	my	top	component,	or	can	I	connect	multiple
components	in	my	tree?

Early	Redux	documentation	advised	that	you	should	only	have	a	few	connected	components	near	the	top	of	your
component	tree.	However,	time	and	experience	has	shown	that	such	a	component	architecture	generally	requires	a
few	components	to	know	too	much	about	the	data	requirements	of	all	their	descendants,	and	forces	them	to	pass
down	a	confusing	number	of	props.

The	current	suggested	best	practice	is	to	categorize	your	components	as	“presentational”	or	“container”	components,
and	extract	a	connected	container	component	wherever	it	makes	sense:

Emphasizing	“one	container	component	at	the	top”	in	Redux	examples	was	a	mistake.	Don't	take	this	as	a
maxim.	Try	to	keep	your	presentation	components	separate.	Create	container	components	by	connecting	them
when	it's	convenient.	Whenever	you	feel	like	you're	duplicating	code	in	parent	components	to	provide	data	for
same	kinds	of	children,	time	to	extract	a	container.	Generally	as	soon	as	you	feel	a	parent	knows	too	much
about	“personal”	data	or	actions	of	its	children,	time	to	extract	a	container.

In	fact,	benchmarks	have	shown	that	more	connected	components	generally	leads	to	better	performance	than	fewer
connected	components.

In	general,	try	to	find	a	balance	between	understandable	data	flow	and	areas	of	responsibility	with	your	components.

Further	information

Documentation

Basics:	Usage	with	React
FAQ:	Performance	-	Scaling

Articles

React	Redux

255

https://react-redux.js.org/api#connect
https://github.com/reduxjs/react-redux/issues/89
https://github.com/reduxjs/react-redux/issues/145
https://github.com/reduxjs/react-redux/issues/255
http://stackoverflow.com/questions/34458261/how-to-get-simple-dispatch-from-this-props-using-connect-w-redux/34458710]

Presentational	and	Container	Components
High-Performance	Redux
React/Redux	Links:	Architecture	-	Redux	Architecture
React/Redux	Links:	Performance	-	Redux	Performance

Discussions

Twitter:	emphasizing	“one	container”	was	a	mistake
#419:	Recommended	usage	of	connect
#756:	container	vs	component?
#1176:	Redux+React	with	only	stateless	components
Stack	Overflow:	can	a	dumb	component	use	a	Redux	container?

React	Redux

256

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
http://somebody32.github.io/high-performance-redux/
https://github.com/markerikson/react-redux-links/blob/master/react-redux-architecture.md#redux-architecture
https://github.com/markerikson/react-redux-links/blob/master/react-performance.md#redux-performance
https://twitter.com/dan_abramov/status/668585589609005056
https://github.com/reduxjs/redux/issues/419
https://github.com/reduxjs/redux/issues/756
https://github.com/reduxjs/redux/issues/1176
http://stackoverflow.com/questions/34992247/can-a-dumb-component-use-render-redux-container-component

Redux	FAQ:	Miscellaneous

Table	of	Contents
Are	there	any	larger,	“real”	Redux	projects?
How	can	I	implement	authentication	in	Redux?

Miscellaneous

Are	there	any	larger,	“real”	Redux	projects?

Yes,	lots	of	them!	To	name	just	a	few:

Twitter's	mobile	site
Wordpress's	new	admin	page
Firefox's	new	debugger
The	HyperTerm	terminal	application

And	many,	many	more!	The	Redux	Addons	Catalog	has	a	list	of	Redux-based	applications	and	examples	that
points	to	a	variety	of	actual	applications,	large	and	small.

Further	information

Documentation

Introduction:	Examples

Discussions

Reddit:	Large	open	source	react/redux	projects?
HN:	Is	there	any	huge	web	application	built	using	Redux?

How	can	I	implement	authentication	in	Redux?

Authentication	is	essential	to	any	real	application.	When	going	about	authentication	you	must	keep	in	mind	that
nothing	changes	with	how	you	should	organize	your	application	and	you	should	implement	authentication	in	the	same
way	you	would	any	other	feature.	It	is	relatively	straightforward:

1.	 Create	action	constants	for		LOGIN_SUCCESS	,		LOGIN_FAILURE	,	etc.

2.	 Create	action	creators	that	take	in	credentials,	a	flag	that	signifies	whether	authentication	succeeded,	a	token,	or
an	error	message	as	the	payload.

3.	 Create	an	async	action	creator	with	Redux	Thunk	middleware	or	any	middleware	you	see	fit	to	fire	a	network
request	to	an	API	that	returns	a	token	if	the	credentials	are	valid.	Then	save	the	token	in	the	local	storage	or
show	a	response	to	the	user	if	it	failed.	You	can	perform	these	side	effects	from	the	action	creators	you	wrote	in
the	previous	step.

4.	 Create	a	reducer	that	returns	the	next	state	for	each	possible	authentication	case	(LOGIN_SUCCESS	,
	LOGIN_FAILURE	,	etc).

Further	information

Miscellaneous

257

https://mobile.twitter.com/
https://github.com/Automattic/wp-calypso
https://github.com/devtools-html/debugger.html
https://github.com/zeit/hyperterm
https://github.com/markerikson/redux-ecosystem-links/blob/master/apps-and-examples.md
https://www.reddit.com/r/reactjs/comments/496db2/large_open_source_reactredux_projects/
https://news.ycombinator.com/item?id=10710240

Articles

Authentication	with	JWT	by	Auth0
Tips	to	Handle	Authentication	in	Redux

Examples

react-redux-jwt-auth-example

Libraries

Redux	Addons	Catalog:	Use	Cases	-	Authentication

Miscellaneous

258

https://auth0.com/blog/2016/01/04/secure-your-react-and-redux-app-with-jwt-authentication/
https://medium.com/@MattiaManzati/tips-to-handle-authentication-in-redux-2-introducing-redux-saga-130d6872fbe7
https://github.com/joshgeller/react-redux-jwt-auth-example
https://github.com/markerikson/redux-ecosystem-links/blob/master/use-cases.md#authentication

Troubleshooting
This	is	a	place	to	share	common	problems	and	solutions	to	them.
The	examples	use	React,	but	you	should	still	find	them	useful	if	you	use	something	else.

Nothing	happens	when	I	dispatch	an	action

Sometimes,	you	are	trying	to	dispatch	an	action,	but	your	view	does	not	update.	Why	does	this	happen?	There	may
be	several	reasons	for	this.

Never	mutate	reducer	arguments

It	is	tempting	to	modify	the		state		or		action		passed	to	you	by	Redux.	Don't	do	this!

Redux	assumes	that	you	never	mutate	the	objects	it	gives	to	you	in	the	reducer.	Every	single	time,	you	must	return
the	new	state	object.	Even	if	you	don't	use	a	library	like	Immutable,	you	need	to	completely	avoid	mutation.

Immutability	is	what	lets	react-redux	efficiently	subscribe	to	fine-grained	updates	of	your	state.	It	also	enables	great
developer	experience	features	such	as	time	travel	with	redux-devtools.

For	example,	a	reducer	like	this	is	wrong	because	it	mutates	the	state:

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						//	Wrong!	This	mutates	state

						state.push({

								text:	action.text,

								completed:	false

						})

						return	state

				case	'COMPLETE_TODO':

						//	Wrong!	This	mutates	state[action.index].

						state[action.index].completed	=	true

						return	state

				default:

						return	state

		}

}

It	needs	to	be	rewritten	like	this:

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						//	Return	a	new	array

						return	[

								...state,

								{

										text:	action.text,

										completed:	false

								}

]

				case	'COMPLETE_TODO':

						//	Return	a	new	array

						return	state.map((todo,	index)	=>	{

								if	(index	===	action.index)	{

										//	Copy	the	object	before	mutating

										return	Object.assign({},	todo,	{

												completed:	true

										})

								}

Troubleshooting

259

https://facebook.github.io/immutable-js/
https://github.com/gaearon/react-redux
http://github.com/reduxjs/redux-devtools

								return	todo

						})

				default:

						return	state

		}

}

It's	more	code,	but	it's	exactly	what	makes	Redux	predictable	and	efficient.	If	you	want	to	have	less	code,	you	can	use
a	helper	like		React.addons.update		to	write	immutable	transformations	with	a	terse	syntax:

//	Before:

return	state.map((todo,	index)	=>	{

		if	(index	===	action.index)	{

				return	Object.assign({},	todo,	{

						completed:	true

				})

		}

		return	todo

})

//	After

return	update(state,	{

		[action.index]:	{

				completed:	{

						$set:	true

				}

		}

})

Finally,	to	update	objects,	you'll	need	something	like		_.extend		from	Underscore,	or	better,	an		Object.assign		polyfill.

Make	sure	that	you	use		Object.assign		correctly.	For	example,	instead	of	returning	something	like
	Object.assign(state,	newData)		from	your	reducers,	return		Object.assign({},	state,	newData)	.	This	way	you	don't
override	the	previous		state	.

You	can	also	enable	the	object	spread	operator	proposal	for	a	more	succinct	syntax:

//	Before:

return	state.map((todo,	index)	=>	{

		if	(index	===	action.index)	{

				return	Object.assign({},	todo,	{

						completed:	true

				})

		}

		return	todo

})

//	After:

return	state.map((todo,	index)	=>	{

		if	(index	===	action.index)	{

				return	{	...todo,	completed:	true	}

		}

		return	todo

})

Note	that	experimental	language	features	are	subject	to	change.

Also	keep	an	eye	out	for	nested	state	objects	that	need	to	be	deeply	copied.	Both		_.extend		and		Object.assign	
make	a	shallow	copy	of	the	state.	See	Updating	Nested	Objects	for	suggestions	on	how	to	deal	with	nested	state
objects.

Don't	forget	to	call		dispatch(action)	

Troubleshooting

260

https://facebook.github.io/react/docs/update.html
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

If	you	define	an	action	creator,	calling	it	will	not	automatically	dispatch	the	action.	For	example,	this	code	will	do
nothing:

	TodoActions.js	

export	function	addTodo(text)	{

		return	{	type:	'ADD_TODO',	text	}

}

	AddTodo.js	

import	React,	{	Component	}	from	'react'

import	{	addTodo	}	from	'./TodoActions'

class	AddTodo	extends	Component	{

		handleClick()	{

				//	Won't	work!

				addTodo('Fix	the	issue')

		}

		render()	{

				return	<button	onClick={()	=>	this.handleClick()}>Add</button>

		}

}

It	doesn't	work	because	your	action	creator	is	just	a	function	that	returns	an	action.	It	is	up	to	you	to	actually	dispatch
it.	We	can't	bind	your	action	creators	to	a	particular	Store	instance	during	the	definition	because	apps	that	render	on
the	server	need	a	separate	Redux	store	for	every	request.

The	fix	is	to	call		dispatch()		method	on	the	store	instance:

handleClick()	{

		//	Works!	(but	you	need	to	grab	store	somehow)

		store.dispatch(addTodo('Fix	the	issue'))

}

If	you're	somewhere	deep	in	the	component	hierarchy,	it	is	cumbersome	to	pass	the	store	down	manually.	This	is	why
react-redux	lets	you	use	a		connect		higher-order	component	that	will,	apart	from	subscribing	you	to	a	Redux	store,
inject		dispatch		into	your	component's	props.

The	fixed	code	looks	like	this:

	AddTodo.js	

import	React,	{	Component	}	from	'react'

import	{	connect	}	from	'react-redux'

import	{	addTodo	}	from	'./TodoActions'

class	AddTodo	extends	Component	{

		handleClick()	{

				//	Works!

				this.props.dispatch(addTodo('Fix	the	issue'))

		}

		render()	{

				return	<button	onClick={()	=>	this.handleClick()}>Add</button>

		}

}

//	In	addition	to	the	state,	`connect`	puts	`dispatch`	in	our	props.

export	default	connect()(AddTodo)

Troubleshooting

261

https://github.com/gaearon/react-redux
https://medium.com/@dan_abramov/mixins-are-dead-long-live-higher-order-components-94a0d2f9e750

You	can	then	pass		dispatch		down	to	other	components	manually,	if	you	want	to.

Make	sure	mapStateToProps	is	correct

It's	possible	you're	correctly	dispatching	an	action	and	applying	your	reducer	but	the	corresponding	state	is	not	being
correctly	translated	into	props.

Something	else	doesn't	work
Ask	around	on	the	#redux	Reactiflux	Discord	channel,	or	create	an	issue.
If	you	figure	it	out,	edit	this	document	as	a	courtesy	to	the	next	person	having	the	same	problem.

Troubleshooting

262

http://reactiflux.com/
https://github.com/reduxjs/redux/issues
https://github.com/reduxjs/redux/edit/master/docs/Troubleshooting.md

Glossary
This	is	a	glossary	of	the	core	terms	in	Redux,	along	with	their	type	signatures.	The	types	are	documented	using	Flow
notation.

State

type	State	=	any

State	(also	called	the	state	tree)	is	a	broad	term,	but	in	the	Redux	API	it	usually	refers	to	the	single	state	value	that	is
managed	by	the	store	and	returned	by		getState()	.	It	represents	the	entire	state	of	a	Redux	application,	which	is
often	a	deeply	nested	object.

By	convention,	the	top-level	state	is	an	object	or	some	other	key-value	collection	like	a	Map,	but	technically	it	can	be
any	type.	Still,	you	should	do	your	best	to	keep	the	state	serializable.	Don't	put	anything	inside	it	that	you	can't	easily
turn	into	JSON.

Action

type	Action	=	Object

An	action	is	a	plain	object	that	represents	an	intention	to	change	the	state.	Actions	are	the	only	way	to	get	data	into
the	store.	Any	data,	whether	from	UI	events,	network	callbacks,	or	other	sources	such	as	WebSockets	needs	to
eventually	be	dispatched	as	actions.

Actions	must	have	a		type		field	that	indicates	the	type	of	action	being	performed.	Types	can	be	defined	as	constants
and	imported	from	another	module.	It's	better	to	use	strings	for		type		than	Symbols	because	strings	are	serializable.

Other	than		type	,	the	structure	of	an	action	object	is	really	up	to	you.	If	you're	interested,	check	out	Flux	Standard
Action	for	recommendations	on	how	actions	should	be	constructed.

See	also	async	action	below.

Reducer

type	Reducer<S,	A>	=	(state:	S,	action:	A)	=>	S

A	reducer	(also	called	a	reducing	function)	is	a	function	that	accepts	an	accumulation	and	a	value	and	returns	a	new
accumulation.	They	are	used	to	reduce	a	collection	of	values	down	to	a	single	value.

Reducers	are	not	unique	to	Redux—they	are	a	fundamental	concept	in	functional	programming.	Even	most	non-
functional	languages,	like	JavaScript,	have	a	built-in	API	for	reducing.	In	JavaScript,	it's		Array.prototype.reduce()	.

In	Redux,	the	accumulated	value	is	the	state	object,	and	the	values	being	accumulated	are	actions.	Reducers
calculate	a	new	state	given	the	previous	state	and	an	action.	They	must	be	pure	functions—functions	that	return	the
exact	same	output	for	given	inputs.	They	should	also	be	free	of	side-effects.	This	is	what	enables	exciting	features	like
hot	reloading	and	time	travel.

Glossary

263

http://flowtype.org/docs/quick-reference.html
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://github.com/acdlite/flux-standard-action
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

Reducers	are	the	most	important	concept	in	Redux.

Do	not	put	API	calls	into	reducers.

Dispatching	Function

type	BaseDispatch	=	(a:	Action)	=>	Action

type	Dispatch	=	(a:	Action	|	AsyncAction)	=>	any

A	dispatching	function	(or	simply	dispatch	function)	is	a	function	that	accepts	an	action	or	an	async	action;	it	then	may
or	may	not	dispatch	one	or	more	actions	to	the	store.

We	must	distinguish	between	dispatching	functions	in	general	and	the	base		dispatch		function	provided	by	the	store
instance	without	any	middleware.

The	base	dispatch	function	always	synchronously	sends	an	action	to	the	store's	reducer,	along	with	the	previous	state
returned	by	the	store,	to	calculate	a	new	state.	It	expects	actions	to	be	plain	objects	ready	to	be	consumed	by	the
reducer.

Middleware	wraps	the	base	dispatch	function.	It	allows	the	dispatch	function	to	handle	async	actions	in	addition	to
actions.	Middleware	may	transform,	delay,	ignore,	or	otherwise	interpret	actions	or	async	actions	before	passing	them
to	the	next	middleware.	See	below	for	more	information.

Action	Creator

type	ActionCreator	=	(...args:	any)	=>	Action	|	AsyncAction

An	action	creator	is,	quite	simply,	a	function	that	creates	an	action.	Do	not	confuse	the	two	terms—again,	an	action	is
a	payload	of	information,	and	an	action	creator	is	a	factory	that	creates	an	action.

Calling	an	action	creator	only	produces	an	action,	but	does	not	dispatch	it.	You	need	to	call	the	store's		dispatch	
function	to	actually	cause	the	mutation.	Sometimes	we	say	bound	action	creators	to	mean	functions	that	call	an	action
creator	and	immediately	dispatch	its	result	to	a	specific	store	instance.

If	an	action	creator	needs	to	read	the	current	state,	perform	an	API	call,	or	cause	a	side	effect,	like	a	routing	transition,
it	should	return	an	async	action	instead	of	an	action.

Async	Action

type	AsyncAction	=	any

An	async	action	is	a	value	that	is	sent	to	a	dispatching	function,	but	is	not	yet	ready	for	consumption	by	the	reducer.	It
will	be	transformed	by	middleware	into	an	action	(or	a	series	of	actions)	before	being	sent	to	the	base		dispatch()	
function.	Async	actions	may	have	different	types,	depending	on	the	middleware	you	use.	They	are	often
asynchronous	primitives,	like	a	Promise	or	a	thunk,	which	are	not	passed	to	the	reducer	immediately,	but	trigger
action	dispatches	once	an	operation	has	completed.

Middleware

Glossary

264

type	MiddlewareAPI	=	{	dispatch:	Dispatch,	getState:	()	=>	State	}

type	Middleware	=	(api:	MiddlewareAPI)	=>	(next:	Dispatch)	=>	Dispatch

A	middleware	is	a	higher-order	function	that	composes	a	dispatch	function	to	return	a	new	dispatch	function.	It	often
turns	async	actions	into	actions.

Middleware	is	composable	using	function	composition.	It	is	useful	for	logging	actions,	performing	side	effects	like
routing,	or	turning	an	asynchronous	API	call	into	a	series	of	synchronous	actions.

See		applyMiddleware(...middlewares)		for	a	detailed	look	at	middleware.

Store

type	Store	=	{

		dispatch:	Dispatch

		getState:	()	=>	State

		subscribe:	(listener:	()	=>	void)	=>	()	=>	void

		replaceReducer:	(reducer:	Reducer)	=>	void

}

A	store	is	an	object	that	holds	the	application's	state	tree.
There	should	only	be	a	single	store	in	a	Redux	app,	as	the	composition	happens	on	the	reducer	level.

	dispatch(action)		is	the	base	dispatch	function	described	above.
	getState()		returns	the	current	state	of	the	store.
	subscribe(listener)		registers	a	function	to	be	called	on	state	changes.
	replaceReducer(nextReducer)		can	be	used	to	implement	hot	reloading	and	code	splitting.	Most	likely	you	won't
use	it.

See	the	complete	store	API	reference	for	more	details.

Store	creator

type	StoreCreator	=	(reducer:	Reducer,	preloadedState:	?State)	=>	Store

A	store	creator	is	a	function	that	creates	a	Redux	store.	Like	with	dispatching	function,	we	must	distinguish	the	base
store	creator,		createStore(reducer,	preloadedState)		exported	from	the	Redux	package,	from	store	creators	that	are
returned	from	the	store	enhancers.

Store	enhancer

type	StoreEnhancer	=	(next:	StoreCreator)	=>	StoreCreator

A	store	enhancer	is	a	higher-order	function	that	composes	a	store	creator	to	return	a	new,	enhanced	store	creator.
This	is	similar	to	middleware	in	that	it	allows	you	to	alter	the	store	interface	in	a	composable	way.

Store	enhancers	are	much	the	same	concept	as	higher-order	components	in	React,	which	are	also	occasionally	called
“component	enhancers”.

Because	a	store	is	not	an	instance,	but	rather	a	plain-object	collection	of	functions,	copies	can	be	easily	created	and
modified	without	mutating	the	original	store.	There	is	an	example	in		compose		documentation	demonstrating	that.

Glossary

265

Most	likely	you'll	never	write	a	store	enhancer,	but	you	may	use	the	one	provided	by	the	developer	tools.	It	is	what
makes	time	travel	possible	without	the	app	being	aware	it	is	happening.	Amusingly,	the	Redux	middleware
implementation	is	itself	a	store	enhancer.

Glossary

266

https://github.com/reduxjs/redux-devtools

API	Reference
The	Redux	API	surface	is	tiny.	Redux	defines	a	set	of	contracts	for	you	to	implement	(such	as	reducers)	and	provides
a	few	helper	functions	to	tie	these	contracts	together.

This	section	documents	the	complete	Redux	API.	Keep	in	mind	that	Redux	is	only	concerned	with	managing	the	state.
In	a	real	app,	you'll	also	want	to	use	UI	bindings	like	react-redux.

Top-Level	Exports

createStore(reducer,	[preloadedState],	[enhancer])
combineReducers(reducers)
applyMiddleware(...middlewares)
bindActionCreators(actionCreators,	dispatch)
compose(...functions)

Store	API

Store
getState()
dispatch(action)
subscribe(listener)
replaceReducer(nextReducer)

Importing

Every	function	described	above	is	a	top-level	export.	You	can	import	any	of	them	like	this:

ES6

import	{	createStore	}	from	'redux'

ES5	(CommonJS)

var	createStore	=	require('redux').createStore

ES5	(UMD	build)

var	createStore	=	Redux.createStore

API	Reference

267

https://github.com/gaearon/react-redux

	createStore(reducer,	[preloadedState],	[enhancer])	

Creates	a	Redux	store	that	holds	the	complete	state	tree	of	your	app.
There	should	only	be	a	single	store	in	your	app.

Arguments

1.	 	reducer		(Function):	A	reducing	function	that	returns	the	next	state	tree,	given	the	current	state	tree	and	an
action	to	handle.

2.	 [preloadedState]	(any):	The	initial	state.	You	may	optionally	specify	it	to	hydrate	the	state	from	the	server	in
universal	apps,	or	to	restore	a	previously	serialized	user	session.	If	you	produced		reducer		with
	combineReducers	,	this	must	be	a	plain	object	with	the	same	shape	as	the	keys	passed	to	it.	Otherwise,	you	are
free	to	pass	anything	that	your		reducer		can	understand.

3.	 [enhancer]	(Function):	The	store	enhancer.	You	may	optionally	specify	it	to	enhance	the	store	with	third-party
capabilities	such	as	middleware,	time	travel,	persistence,	etc.	The	only	store	enhancer	that	ships	with	Redux	is
	applyMiddleware()	.

Returns

(Store):	An	object	that	holds	the	complete	state	of	your	app.	The	only	way	to	change	its	state	is	by	dispatching
actions.	You	may	also	subscribe	to	the	changes	to	its	state	to	update	the	UI.

Example

import	{	createStore	}	from	'redux'

function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						return	state.concat([action.text])

				default:

						return	state

		}

}

const	store	=	createStore(todos,	['Use	Redux'])

store.dispatch({

		type:	'ADD_TODO',

		text:	'Read	the	docs'

})

console.log(store.getState())

//	['Use	Redux',	'Read	the	docs']

Tips

Don't	create	more	than	one	store	in	an	application!	Instead,	use		combineReducers		to	create	a	single	root	reducer
out	of	many.

It	is	up	to	you	to	choose	the	state	format.	You	can	use	plain	objects	or	something	like	Immutable.	If	you're	not
sure,	start	with	plain	objects.

createStore

268

http://facebook.github.io/immutable-js/

If	your	state	is	a	plain	object,	make	sure	you	never	mutate	it!	For	example,	instead	of	returning	something	like
	Object.assign(state,	newData)		from	your	reducers,	return		Object.assign({},	state,	newData)	.	This	way	you
don't	override	the	previous		state	.	You	can	also	write		return	{	...state,	...newData	}		if	you	enable	the	object
spread	operator	proposal.

For	universal	apps	that	run	on	the	server,	create	a	store	instance	with	every	request	so	that	they	are	isolated.
Dispatch	a	few	data	fetching	actions	to	a	store	instance	and	wait	for	them	to	complete	before	rendering	the	app
on	the	server.

When	a	store	is	created,	Redux	dispatches	a	dummy	action	to	your	reducer	to	populate	the	store	with	the	initial
state.	You	are	not	meant	to	handle	the	dummy	action	directly.	Just	remember	that	your	reducer	should	return
some	kind	of	initial	state	if	the	state	given	to	it	as	the	first	argument	is		undefined	,	and	you're	all	set.

To	apply	multiple	store	enhancers,	you	may	use		compose()	.

createStore

269

Store
A	store	holds	the	whole	state	tree	of	your	application.	The	only	way	to	change	the	state	inside	it	is	to	dispatch	an
action	on	it.

A	store	is	not	a	class.	It's	just	an	object	with	a	few	methods	on	it.	To	create	it,	pass	your	root	reducing	function	to
	createStore	.

A	Note	for	Flux	Users

If	you're	coming	from	Flux,	there	is	a	single	important	difference	you	need	to	understand.	Redux	doesn't	have	a
Dispatcher	or	support	many	stores.	Instead,	there	is	just	a	single	store	with	a	single	root	reducing
function.	As	your	app	grows,	instead	of	adding	stores,	you	split	the	root	reducer	into	smaller	reducers
independently	operating	on	the	different	parts	of	the	state	tree.	You	can	use	a	helper	like		combineReducers		to
combine	them.	This	is	similar	to	how	there	is	just	one	root	component	in	a	React	app,	but	it	is	composed	out	of
many	small	components.

Store	Methods

	getState()	

	dispatch(action)	

	subscribe(listener)	

	replaceReducer(nextReducer)	

Store	Methods

	getState()	

Returns	the	current	state	tree	of	your	application.	It	is	equal	to	the	last	value	returned	by	the	store's	reducer.

Returns

(any):	The	current	state	tree	of	your	application.

	dispatch(action)	

Dispatches	an	action.	This	is	the	only	way	to	trigger	a	state	change.

The	store's	reducing	function	will	be	called	with	the	current		getState()		result	and	the	given		action		synchronously.
Its	return	value	will	be	considered	the	next	state.	It	will	be	returned	from		getState()		from	now	on,	and	the	change
listeners	will	immediately	be	notified.

A	Note	for	Flux	Users

If	you	attempt	to	call		dispatch		from	inside	the	reducer,	it	will	throw	with	an	error	saying	“Reducers	may	not
dispatch	actions.”	This	is	similar	to	“Cannot	dispatch	in	a	middle	of	dispatch”	error	in	Flux,	but	doesn't	cause	the
problems	associated	with	it.	In	Flux,	a	dispatch	is	forbidden	while	Stores	are	handling	the	action	and	emitting
updates.	This	is	unfortunate	because	it	makes	it	impossible	to	dispatch	actions	from	component	lifecycle	hooks
or	other	benign	places.

Store

270

In	Redux,	subscriptions	are	called	after	the	root	reducer	has	returned	the	new	state,	so	you	may	dispatch	in	the
subscription	listeners.	You	are	only	disallowed	to	dispatch	inside	the	reducers	because	they	must	have	no	side
effects.	If	you	want	to	cause	a	side	effect	in	response	to	an	action,	the	right	place	to	do	this	is	in	the	potentially
async	action	creator.

Arguments

1.	 	action		(Object):	A	plain	object	describing	the	change	that	makes	sense	for	your	application.	Actions	are	the
only	way	to	get	data	into	the	store,	so	any	data,	whether	from	the	UI	events,	network	callbacks,	or	other	sources
such	as	WebSockets	needs	to	eventually	be	dispatched	as	actions.	Actions	must	have	a		type		field	that
indicates	the	type	of	action	being	performed.	Types	can	be	defined	as	constants	and	imported	from	another
module.	It's	better	to	use	strings	for		type		than	Symbols	because	strings	are	serializable.	Other	than		type	,	the
structure	of	an	action	object	is	really	up	to	you.	If	you're	interested,	check	out	Flux	Standard	Action	for
recommendations	on	how	actions	could	be	constructed.

Returns

(Object):	The	dispatched	action	(see	notes).

Notes

	The	“vanilla”	store	implementation	you	get	by	calling		createStore		only	supports	plain	object	actions	and	hands
them	immediately	to	the	reducer.

However,	if	you	wrap		createStore		with		applyMiddleware	,	the	middleware	can	interpret	actions	differently,	and
provide	support	for	dispatching	async	actions.	Async	actions	are	usually	asynchronous	primitives	like	Promises,
Observables,	or	thunks.

Middleware	is	created	by	the	community	and	does	not	ship	with	Redux	by	default.	You	need	to	explicitly	install
packages	like	redux-thunk	or	redux-promise	to	use	it.	You	may	also	create	your	own	middleware.

To	learn	how	to	describe	asynchronous	API	calls,	read	the	current	state	inside	action	creators,	perform	side	effects,	or
chain	them	to	execute	in	a	sequence,	see	the	examples	for		applyMiddleware	.

Example

import	{	createStore	}	from	'redux'

const	store	=	createStore(todos,	['Use	Redux'])

function	addTodo(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

store.dispatch(addTodo('Read	the	docs'))

store.dispatch(addTodo('Read	about	the	middleware'))

	subscribe(listener)	

Adds	a	change	listener.	It	will	be	called	any	time	an	action	is	dispatched,	and	some	part	of	the	state	tree	may
potentially	have	changed.	You	may	then	call		getState()		to	read	the	current	state	tree	inside	the	callback.

You	may	call		dispatch()		from	a	change	listener,	with	the	following	caveats:

†

†

†

Store

271

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Symbol
https://github.com/acdlite/flux-standard-action
https://github.com/gaearon/redux-thunk
https://github.com/acdlite/redux-promise

1.	 The	listener	should	only	call		dispatch()		either	in	response	to	user	actions	or	under	specific	conditions	(e.	g.
dispatching	an	action	when	the	store	has	a	specific	field).	Calling		dispatch()		without	any	conditions	is
technically	possible,	however	it	leads	to	an	infinite	loop	as	every		dispatch()		call	usually	triggers	the	listener
again.

2.	 The	subscriptions	are	snapshotted	just	before	every		dispatch()		call.	If	you	subscribe	or	unsubscribe	while	the
listeners	are	being	invoked,	this	will	not	have	any	effect	on	the		dispatch()		that	is	currently	in	progress.	However,
the	next		dispatch()		call,	whether	nested	or	not,	will	use	a	more	recent	snapshot	of	the	subscription	list.

3.	 The	listener	should	not	expect	to	see	all	state	changes,	as	the	state	might	have	been	updated	multiple	times
during	a	nested		dispatch()		before	the	listener	is	called.	It	is,	however,	guaranteed	that	all	subscribers	registered
before	the		dispatch()		started	will	be	called	with	the	latest	state	by	the	time	it	exits.

It	is	a	low-level	API.	Most	likely,	instead	of	using	it	directly,	you'll	use	React	(or	other)	bindings.	If	you	commonly	use
the	callback	as	a	hook	to	react	to	state	changes,	you	might	want	to	write	a	custom		observeStore		utility.	The		Store		is
also	an		Observable	,	so	you	can		subscribe		to	changes	with	libraries	like	RxJS.

To	unsubscribe	the	change	listener,	invoke	the	function	returned	by		subscribe	.

Arguments

1.	 	listener		(Function):	The	callback	to	be	invoked	any	time	an	action	has	been	dispatched,	and	the	state	tree
might	have	changed.	You	may	call		getState()		inside	this	callback	to	read	the	current	state	tree.	It	is	reasonable
to	expect	that	the	store's	reducer	is	a	pure	function,	so	you	may	compare	references	to	some	deep	path	in	the
state	tree	to	learn	whether	its	value	has	changed.

Returns

(Function):	A	function	that	unsubscribes	the	change	listener.

Example

function	select(state)	{

		return	state.some.deep.property

}

let	currentValue

function	handleChange()	{

		let	previousValue	=	currentValue

		currentValue	=	select(store.getState())

		if	(previousValue	!==	currentValue)	{

				console.log(

						'Some	deep	nested	property	changed	from',

						previousValue,

						'to',

						currentValue

)

		}

}

const	unsubscribe	=	store.subscribe(handleChange)

unsubscribe()

	replaceReducer(nextReducer)	

Replaces	the	reducer	currently	used	by	the	store	to	calculate	the	state.

Store

272

https://github.com/reduxjs/redux/issues/303#issuecomment-125184409
https://github.com/zenparsing/es-observable
https://github.com/ReactiveX/RxJS

It	is	an	advanced	API.	You	might	need	this	if	your	app	implements	code	splitting,	and	you	want	to	load	some	of	the
reducers	dynamically.	You	might	also	need	this	if	you	implement	a	hot	reloading	mechanism	for	Redux.

Arguments

1.	 	nextReducer		(Function)	The	next	reducer	for	the	store	to	use.

Store

273

	combineReducers(reducers)	

As	your	app	grows	more	complex,	you'll	want	to	split	your	reducing	function	into	separate	functions,	each	managing
independent	parts	of	the	state.

The		combineReducers		helper	function	turns	an	object	whose	values	are	different	reducing	functions	into	a	single
reducing	function	you	can	pass	to		createStore	.

The	resulting	reducer	calls	every	child	reducer,	and	gathers	their	results	into	a	single	state	object.	The	state
produced	by		combineReducers()		namespaces	the	states	of	each	reducer	under	their	keys	as	passed	to
	combineReducers()	

Example:

rootReducer	=	combineReducers({potato:	potatoReducer,	tomato:	tomatoReducer})

//	This	would	produce	the	following	state	object

{

		potato:	{

				//	...	potatoes,	and	other	state	managed	by	the	potatoReducer	...

		},

		tomato:	{

				//	...	tomatoes,	and	other	state	managed	by	the	tomatoReducer,	maybe	some	nice	sauce?	...

		}

}

You	can	control	state	key	names	by	using	different	keys	for	the	reducers	in	the	passed	object.	For	example,	you	may
call		combineReducers({	todos:	myTodosReducer,	counter:	myCounterReducer	})		for	the	state	shape	to	be		{	todos,
counter	}	.

A	popular	convention	is	to	name	reducers	after	the	state	slices	they	manage,	so	you	can	use	ES6	property	shorthand
notation:		combineReducers({	counter,	todos	})	.	This	is	equivalent	to	writing		combineReducers({	counter:	counter,
todos:	todos	})	.

A	Note	for	Flux	Users

This	function	helps	you	organize	your	reducers	to	manage	their	own	slices	of	state,	similar	to	how	you	would
have	different	Flux	Stores	to	manage	different	state.	With	Redux,	there	is	just	one	store,	but		combineReducers	
helps	you	keep	the	same	logical	division	between	reducers.

Arguments

1.	 	reducers		(Object):	An	object	whose	values	correspond	to	different	reducing	functions	that	need	to	be	combined
into	one.	See	the	notes	below	for	some	rules	every	passed	reducer	must	follow.

Earlier	documentation	suggested	the	use	of	the	ES6		import	*	as	reducers		syntax	to	obtain	the	reducers
object.	This	was	the	source	of	a	lot	of	confusion,	which	is	why	we	now	recommend	exporting	a	single	reducer
obtained	using		combineReducers()		from		reducers/index.js		instead.	An	example	is	included	below.

Returns

(Function):	A	reducer	that	invokes	every	reducer	inside	the		reducers		object,	and	constructs	a	state	object	with	the
same	shape.

Notes

combineReducers

274

This	function	is	mildly	opinionated	and	is	skewed	towards	helping	beginners	avoid	common	pitfalls.	This	is	why	it
attempts	to	enforce	some	rules	that	you	don't	have	to	follow	if	you	write	the	root	reducer	manually.

Any	reducer	passed	to		combineReducers		must	satisfy	these	rules:

For	any	action	that	is	not	recognized,	it	must	return	the		state		given	to	it	as	the	first	argument.

It	must	never	return		undefined	.	It	is	too	easy	to	do	this	by	mistake	via	an	early		return		statement,	so
	combineReducers		throws	if	you	do	that	instead	of	letting	the	error	manifest	itself	somewhere	else.

If	the		state		given	to	it	is		undefined	,	it	must	return	the	initial	state	for	this	specific	reducer.	According	to	the
previous	rule,	the	initial	state	must	not	be		undefined		either.	It	is	handy	to	specify	it	with	ES6	optional	arguments
syntax,	but	you	can	also	explicitly	check	the	first	argument	for	being		undefined	.

While		combineReducers		attempts	to	check	that	your	reducers	conform	to	some	of	these	rules,	you	should	remember
them,	and	do	your	best	to	follow	them.		combineReducers		will	check	your	reducers	by	passing		undefined		to	them;	this
is	done	even	if	you	specify	initial	state	to		Redux.createStore(combineReducers(...),	initialState)	.	Therefore,	you
must	ensure	your	reducers	work	properly	when	receiving		undefined		as	state,	even	if	you	never	intend	for	them	to
actually	receive		undefined		in	your	own	code.

Example

	reducers/todos.js	

export	default	function	todos(state	=	[],	action)	{

		switch	(action.type)	{

				case	'ADD_TODO':

						return	state.concat([action.text])

				default:

						return	state

		}

}

	reducers/counter.js	

export	default	function	counter(state	=	0,	action)	{

		switch	(action.type)	{

				case	'INCREMENT':

						return	state	+	1

				case	'DECREMENT':

						return	state	-	1

				default:

						return	state

		}

}

	reducers/index.js	

import	{	combineReducers	}	from	'redux'

import	todos	from	'./todos'

import	counter	from	'./counter'

export	default	combineReducers({

		todos,

		counter

})

	App.js	

combineReducers

275

import	{	createStore	}	from	'redux'

import	reducer	from	'./reducers/index'

const	store	=	createStore(reducer)

console.log(store.getState())

//	{

//			counter:	0,

//			todos:	[]

//	}

store.dispatch({

		type:	'ADD_TODO',

		text:	'Use	Redux'

})

console.log(store.getState())

//	{

//			counter:	0,

//			todos:	['Use	Redux']

//	}

Tips

This	helper	is	just	a	convenience!	You	can	write	your	own		combineReducers		that	works	differently,	or	even
assemble	the	state	object	from	the	child	reducers	manually	and	write	a	root	reducing	function	explicitly,	like	you
would	write	any	other	function.

You	may	call		combineReducers		at	any	level	of	the	reducer	hierarchy.	It	doesn't	have	to	happen	at	the	top.	In	fact
you	may	use	it	again	to	split	the	child	reducers	that	get	too	complicated	into	independent	grandchildren,	and	so
on.

combineReducers

276

https://github.com/acdlite/reduce-reducers

	applyMiddleware(...middleware)	

Middleware	is	the	suggested	way	to	extend	Redux	with	custom	functionality.	Middleware	lets	you	wrap	the	store's
	dispatch		method	for	fun	and	profit.	The	key	feature	of	middleware	is	that	it	is	composable.	Multiple	middleware	can
be	combined	together,	where	each	middleware	requires	no	knowledge	of	what	comes	before	or	after	it	in	the	chain.

The	most	common	use	case	for	middleware	is	to	support	asynchronous	actions	without	much	boilerplate	code	or	a
dependency	on	a	library	like	Rx.	It	does	so	by	letting	you	dispatch	async	actions	in	addition	to	normal	actions.

For	example,	redux-thunk	lets	the	action	creators	invert	control	by	dispatching	functions.	They	would	receive
	dispatch		as	an	argument	and	may	call	it	asynchronously.	Such	functions	are	called	thunks.	Another	example	of
middleware	is	redux-promise.	It	lets	you	dispatch	a	Promise	async	action,	and	dispatches	a	normal	action	when	the
Promise	resolves.

Middleware	is	not	baked	into		createStore		and	is	not	a	fundamental	part	of	the	Redux	architecture,	but	we	consider	it
useful	enough	to	be	supported	right	in	the	core.	This	way,	there	is	a	single	standard	way	to	extend		dispatch		in	the
ecosystem,	and	different	middleware	may	compete	in	expressiveness	and	utility.

Arguments

	...middleware		(arguments):	Functions	that	conform	to	the	Redux	middleware	API.	Each	middleware	receives
	Store	's		dispatch		and		getState		functions	as	named	arguments,	and	returns	a	function.	That	function	will	be
given	the		next		middleware's	dispatch	method,	and	is	expected	to	return	a	function	of		action		calling
	next(action)		with	a	potentially	different	argument,	or	at	a	different	time,	or	maybe	not	calling	it	at	all.	The	last
middleware	in	the	chain	will	receive	the	real	store's		dispatch		method	as	the		next		parameter,	thus	ending	the
chain.	So,	the	middleware	signature	is		({	getState,	dispatch	})	=>	next	=>	action	.

Returns

(Function)	A	store	enhancer	that	applies	the	given	middleware.	The	store	enhancer	signature	is		createStore	=>
createStore		but	the	easiest	way	to	apply	it	is	to	pass	it	to		createStore()		as	the	last		enhancer		argument.

Example:	Custom	Logger	Middleware

import	{	createStore,	applyMiddleware	}	from	'redux'

import	todos	from	'./reducers'

function	logger({	getState	})	{

		return	next	=>	action	=>	{

				console.log('will	dispatch',	action)

				//	Call	the	next	dispatch	method	in	the	middleware	chain.

				const	returnValue	=	next(action)

				console.log('state	after	dispatch',	getState())

				//	This	will	likely	be	the	action	itself,	unless

				//	a	middleware	further	in	chain	changed	it.

				return	returnValue

		}

}

const	store	=	createStore(todos,	['Use	Redux'],	applyMiddleware(logger))

store.dispatch({

		type:	'ADD_TODO',

		text:	'Understand	the	middleware'

})

applyMiddleware

277

https://github.com/Reactive-Extensions/RxJS
https://github.com/gaearon/redux-thunk
https://github.com/acdlite/redux-promise
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise

//	(These	lines	will	be	logged	by	the	middleware:)

//	will	dispatch:	{	type:	'ADD_TODO',	text:	'Understand	the	middleware'	}

//	state	after	dispatch:	['Use	Redux',	'Understand	the	middleware']

Example:	Using	Thunk	Middleware	for	Async	Actions

import	{	createStore,	combineReducers,	applyMiddleware	}	from	'redux'

import	thunk	from	'redux-thunk'

import	*	as	reducers	from	'./reducers'

const	reducer	=	combineReducers(reducers)

//	applyMiddleware	supercharges	createStore	with	middleware:

const	store	=	createStore(reducer,	applyMiddleware(thunk))

function	fetchSecretSauce()	{

		return	fetch('https://www.google.com/search?q=secret+sauce')

}

//	These	are	the	normal	action	creators	you	have	seen	so	far.

//	The	actions	they	return	can	be	dispatched	without	any	middleware.

//	However,	they	only	express	“facts”	and	not	the	“async	flow”.

function	makeASandwich(forPerson,	secretSauce)	{

		return	{

				type:	'MAKE_SANDWICH',

				forPerson,

				secretSauce

		}

}

function	apologize(fromPerson,	toPerson,	error)	{

		return	{

				type:	'APOLOGIZE',

				fromPerson,

				toPerson,

				error

		}

}

function	withdrawMoney(amount)	{

		return	{

				type:	'WITHDRAW',

				amount

		}

}

//	Even	without	middleware,	you	can	dispatch	an	action:

store.dispatch(withdrawMoney(100))

//	But	what	do	you	do	when	you	need	to	start	an	asynchronous	action,

//	such	as	an	API	call,	or	a	router	transition?

//	Meet	thunks.

//	A	thunk	is	a	function	that	returns	a	function.

//	This	is	a	thunk.

function	makeASandwichWithSecretSauce(forPerson)	{

		//	Invert	control!

		//	Return	a	function	that	accepts	`dispatch`	so	we	can	dispatch	later.

		//	Thunk	middleware	knows	how	to	turn	thunk	async	actions	into	actions.

		return	function(dispatch)	{

				return	fetchSecretSauce().then(

						sauce	=>	dispatch(makeASandwich(forPerson,	sauce)),

						error	=>	dispatch(apologize('The	Sandwich	Shop',	forPerson,	error))

)

		}

}

//	Thunk	middleware	lets	me	dispatch	thunk	async	actions

//	as	if	they	were	actions!

store.dispatch(makeASandwichWithSecretSauce('Me'))

//	It	even	takes	care	to	return	the	thunk's	return	value

applyMiddleware

278

//	from	the	dispatch,	so	I	can	chain	Promises	as	long	as	I	return	them.

store.dispatch(makeASandwichWithSecretSauce('My	wife')).then(()	=>	{

		console.log('Done!')

})

//	In	fact	I	can	write	action	creators	that	dispatch

//	actions	and	async	actions	from	other	action	creators,

//	and	I	can	build	my	control	flow	with	Promises.

function	makeSandwichesForEverybody()	{

		return	function(dispatch,	getState)	{

				if	(!getState().sandwiches.isShopOpen)	{

						//	You	don't	have	to	return	Promises,	but	it's	a	handy	convention

						//	so	the	caller	can	always	call	.then()	on	async	dispatch	result.

						return	Promise.resolve()

				}

				//	We	can	dispatch	both	plain	object	actions	and	other	thunks,

				//	which	lets	us	compose	the	asynchronous	actions	in	a	single	flow.

				return	dispatch(makeASandwichWithSecretSauce('My	Grandma'))

						.then(()	=>

								Promise.all([

										dispatch(makeASandwichWithSecretSauce('Me')),

										dispatch(makeASandwichWithSecretSauce('My	wife'))

])

)

						.then(()	=>	dispatch(makeASandwichWithSecretSauce('Our	kids')))

						.then(()	=>

								dispatch(

										getState().myMoney	>	42

												?	withdrawMoney(42)

												:	apologize('Me',	'The	Sandwich	Shop')

)

)

		}

}

//	This	is	very	useful	for	server	side	rendering,	because	I	can	wait

//	until	data	is	available,	then	synchronously	render	the	app.

import	{	renderToString	}	from	'react-dom/server'

store

		.dispatch(makeSandwichesForEverybody())

		.then(()	=>	response.send(renderToString(<MyApp	store={store}	/>)))

//	I	can	also	dispatch	a	thunk	async	action	from	a	component

//	any	time	its	props	change	to	load	the	missing	data.

import	{	connect	}	from	'react-redux'

import	{	Component	}	from	'react'

class	SandwichShop	extends	Component	{

		componentDidMount()	{

				this.props.dispatch(makeASandwichWithSecretSauce(this.props.forPerson))

		}

		componentDidUpdate(prevProps)	{

				if	(prevProps.forPerson	!==	this.props.forPerson)	{

						this.props.dispatch(makeASandwichWithSecretSauce(this.props.forPerson))

				}

		}

		render()	{

				return	<p>{this.props.sandwiches.join('mustard')}</p>

		}

}

export	default	connect(state	=>	({

		sandwiches:	state.sandwiches

}))(SandwichShop)

Tips

applyMiddleware

279

Middleware	only	wraps	the	store's		dispatch		function.	Technically,	anything	a	middleware	can	do,	you	can	do
manually	by	wrapping	every		dispatch		call,	but	it's	easier	to	manage	this	in	a	single	place	and	define	action
transformations	on	the	scale	of	the	whole	project.

If	you	use	other	store	enhancers	in	addition	to		applyMiddleware	,	make	sure	to	put		applyMiddleware		before	them
in	the	composition	chain	because	the	middleware	is	potentially	asynchronous.	For	example,	it	should	go	before
redux-devtools	because	otherwise	the	DevTools	won't	see	the	raw	actions	emitted	by	the	Promise	middleware
and	such.

If	you	want	to	conditionally	apply	a	middleware,	make	sure	to	only	import	it	when	it's	needed:

let	middleware	=	[a,	b]

if	(process.env.NODE_ENV	!==	'production')	{

		const	c	=	require('some-debug-middleware')

		const	d	=	require('another-debug-middleware')

		middleware	=	[...middleware,	c,	d]

}

const	store	=	createStore(

		reducer,

		preloadedState,

		applyMiddleware(...middleware)

)

This	makes	it	easier	for	bundling	tools	to	cut	out	unneeded	modules	and	reduces	the	size	of	your	builds.

Ever	wondered	what		applyMiddleware		itself	is?	It	ought	to	be	an	extension	mechanism	more	powerful	than	the
middleware	itself.	Indeed,		applyMiddleware		is	an	example	of	the	most	powerful	Redux	extension	mechanism
called	store	enhancers.	It	is	highly	unlikely	you'll	ever	want	to	write	a	store	enhancer	yourself.	Another	example	of
a	store	enhancer	is	redux-devtools.	Middleware	is	less	powerful	than	a	store	enhancer,	but	it	is	easier	to	write.

Middleware	sounds	much	more	complicated	than	it	really	is.	The	only	way	to	really	understand	middleware	is	to
see	how	the	existing	middleware	works,	and	try	to	write	your	own.	The	function	nesting	can	be	intimidating,	but
most	of	the	middleware	you'll	find	are,	in	fact,	10-liners,	and	the	nesting	and	composability	is	what	makes	the
middleware	system	powerful.

To	apply	multiple	store	enhancers,	you	may	use		compose()	.

applyMiddleware

280

https://github.com/reduxjs/redux-devtools
https://github.com/reduxjs/redux-devtools

	bindActionCreators(actionCreators,	dispatch)	

Turns	an	object	whose	values	are	action	creators,	into	an	object	with	the	same	keys,	but	with	every	action	creator
wrapped	into	a		dispatch		call	so	they	may	be	invoked	directly.

Normally	you	should	just	call		dispatch		directly	on	your		Store		instance.	If	you	use	Redux	with	React,	react-redux	will
provide	you	with	the		dispatch		function	so	you	can	call	it	directly,	too.

The	only	use	case	for		bindActionCreators		is	when	you	want	to	pass	some	action	creators	down	to	a	component	that
isn't	aware	of	Redux,	and	you	don't	want	to	pass		dispatch		or	the	Redux	store	to	it.

For	convenience,	you	can	also	pass	an	action	creator	as	the	first	argument,	and	get	a	dispatch	wrapped	function	in
return.

Parameters

1.	 	actionCreators		(Function	or	Object):	An	action	creator,	or	an	object	whose	values	are	action	creators.

2.	 	dispatch		(Function):	A		dispatch		function	available	on	the		Store		instance.

Returns

(Function	or	Object):	An	object	mimicking	the	original	object,	but	with	each	function	immediately	dispatching	the	action
returned	by	the	corresponding	action	creator.	If	you	passed	a	function	as		actionCreators	,	the	return	value	will	also	be
a	single	function.

Example

	TodoActionCreators.js	

export	function	addTodo(text)	{

		return	{

				type:	'ADD_TODO',

				text

		}

}

export	function	removeTodo(id)	{

		return	{

				type:	'REMOVE_TODO',

				id

		}

}

	SomeComponent.js	

import	{	Component	}	from	'react'

import	{	bindActionCreators	}	from	'redux'

import	{	connect	}	from	'react-redux'

import	*	as	TodoActionCreators	from	'./TodoActionCreators'

console.log(TodoActionCreators)

//	{

//			addTodo:	Function,

//			removeTodo:	Function

//	}

class	TodoListContainer	extends	Component	{

bindActionCreators

281

https://github.com/gaearon/react-redux

		constructor(props)	{

				super(props)

				const	{	dispatch	}	=	props

				//	Here's	a	good	use	case	for	bindActionCreators:

				//	You	want	a	child	component	to	be	completely	unaware	of	Redux.

				//	We	create	bound	versions	of	these	functions	now	so	we	can

				//	pass	them	down	to	our	child	later.

				this.boundActionCreators	=	bindActionCreators(TodoActionCreators,	dispatch)

				console.log(this.boundActionCreators)

				//	{

				//			addTodo:	Function,

				//			removeTodo:	Function

				//	}

		}

		componentDidMount()	{

				//	Injected	by	react-redux:

				let	{	dispatch	}	=	this.props

				//	Note:	this	won't	work:

				//	TodoActionCreators.addTodo('Use	Redux')

				//	You're	just	calling	a	function	that	creates	an	action.

				//	You	must	dispatch	the	action,	too!

				//	This	will	work:

				let	action	=	TodoActionCreators.addTodo('Use	Redux')

				dispatch(action)

		}

		render()	{

				//	Injected	by	react-redux:

				let	{	todos	}	=	this.props

				return	<TodoList	todos={todos}	{...this.boundActionCreators}	/>

				//	An	alternative	to	bindActionCreators	is	to	pass

				//	just	the	dispatch	function	down,	but	then	your	child	component

				//	needs	to	import	action	creators	and	know	about	them.

				//	return	<TodoList	todos={todos}	dispatch={dispatch}	/>

		}

}

export	default	connect(state	=>	({	todos:	state.todos	}))(TodoListContainer)

Tips

You	might	ask:	why	don't	we	bind	the	action	creators	to	the	store	instance	right	away,	like	in	classical	Flux?	The
problem	is	that	this	won't	work	well	with	universal	apps	that	need	to	render	on	the	server.	Most	likely	you	want	to
have	a	separate	store	instance	per	request	so	you	can	prepare	them	with	different	data,	but	binding	action
creators	during	their	definition	means	you're	stuck	with	a	single	store	instance	for	all	requests.

If	you	use	ES5,	instead	of		import	*	as		syntax	you	can	just	pass		require('./TodoActionCreators')		to
	bindActionCreators		as	the	first	argument.	The	only	thing	it	cares	about	is	that	the	values	of	the		actionCreators	
properties	are	functions.	The	module	system	doesn't	matter.

bindActionCreators

282

	compose(...functions)	

Composes	functions	from	right	to	left.

This	is	a	functional	programming	utility,	and	is	included	in	Redux	as	a	convenience.
You	might	want	to	use	it	to	apply	several	store	enhancers	in	a	row.

Arguments

1.	 (arguments):	The	functions	to	compose.	Each	function	is	expected	to	accept	a	single	parameter.	Its	return	value
will	be	provided	as	an	argument	to	the	function	standing	to	the	left,	and	so	on.	The	exception	is	the	right-most
argument	which	can	accept	multiple	parameters,	as	it	will	provide	the	signature	for	the	resulting	composed
function.

Returns

(Function):	The	final	function	obtained	by	composing	the	given	functions	from	right	to	left.

Example

This	example	demonstrates	how	to	use		compose		to	enhance	a	store	with		applyMiddleware		and	a	few	developer	tools
from	the	redux-devtools	package.

import	{	createStore,	applyMiddleware,	compose	}	from	'redux'

import	thunk	from	'redux-thunk'

import	DevTools	from	'./containers/DevTools'

import	reducer	from	'../reducers'

const	store	=	createStore(

		reducer,

		compose(

				applyMiddleware(thunk),

				DevTools.instrument()

)

)

Tips

All		compose		does	is	let	you	write	deeply	nested	function	transformations	without	the	rightward	drift	of	the	code.
Don't	give	it	too	much	credit!

compose

283

https://github.com/reduxjs/redux-devtools

Change	Log

Change	Log
This	project	adheres	to	Semantic	Versioning.
Every	release,	along	with	the	migration	instructions,	is	documented	on	the	Github	Releases	page.

Change	Log

284

http://semver.org/
https://github.com/reduxjs/redux/releases

Patrons

Patrons
The	work	on	Redux	was	funded	by	the	community.
Meet	some	of	the	outstanding	companies	and	individuals	that	made	it	possible:

Webflow
Ximedes
HauteLook
Ken	Wheeler
Chung	Yen	Li
Sunil	Pai
Charlie	Cheever
Eugene	G
Matt	Apperson
Jed	Watson
Sasha	Aickin
Stefan	Tennigkeit
Sam	Vincent
Olegzandr	Denman

Patrons

285

https://www.patreon.com/reactdx
https://github.com/webflow
https://www.ximedes.com/
http://hautelook.github.io/
http://kenwheeler.github.io/
https://www.facebook.com/prototocal.lee
https://twitter.com/threepointone
https://twitter.com/ccheever
https://twitter.com/e1g
https://twitter.com/mattapperson
https://twitter.com/jedwatson
https://twitter.com/xander76
https://twitter.com/whobubble
https://twitter.com/samvincent

Feedback
We	appreciate	feedback	from	the	community.	You	can	post	feature	requests	and	bug	reports	on	Product	Pains.

Feedback

286

https://productpains.com/product/redux

	Introduction
	Read Me
	Introduction
	Motivation
	Core Concepts
	Three Principles
	Prior Art
	Learning Resources
	Ecosystem
	Examples

	Basics
	Actions
	Reducers
	Store
	Data Flow
	Usage with React
	Example: Todo List

	Advanced
	Async Actions
	Async Flow
	Middleware
	Usage with React Router
	Example: Reddit API
	Next Steps

	Recipes
	Configuring Your Store
	Migrating to Redux
	Using Object Spread Operator
	Reducing Boilerplate
	Server Rendering
	Writing Tests
	Computing Derived Data
	Implementing Undo History
	Isolating Subapps
	Structuring Reducers
	Prerequisite Concepts
	Basic Reducer Structure
	Splitting Reducer Logic
	Refactoring Reducers Example
	Using combineReducers
	Beyond combineReducers
	Normalizing State Shape
	Updating Normalized Data
	Reusing Reducer Logic
	Immutable Update Patterns
	Initializing State

	Using Immutable.JS with Redux

	FAQ
	General
	Reducers
	Organizing State
	Store Setup
	Actions
	Immutable Data
	Code Structure
	Performance
	Design Decisions
	React Redux
	Miscellaneous

	Troubleshooting
	Glossary
	API Reference
	createStore
	Store
	combineReducers
	applyMiddleware
	bindActionCreators
	compose

	Change Log
	Patrons
	Feedback

