-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_val.py
430 lines (388 loc) · 17 KB
/
train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
#!/user/bin/python3
# -*- coding:utf-8 -*-
import time
import argparse
import random
import pandas as pd
import torch.optim as optim
import torch.utils.data
from matplotlib import pyplot as plt
from dataset import *
from model import EMV
import copy
from tqdm import tqdm
import os
import wandb
import seaborn as sns
def train_model(model, data_loaders, optimizer, num_epochs, scheduler=None):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
model = model.cuda()
h, label = None, None
best_con, best_ig = None, None
unknown_ig = None
for epoch in range(num_epochs):
print("Epoch {}/{}".format(epoch, num_epochs - 1))
print("-" * 10)
for phase in ["train", "val", "ood"]:
if phase == "train":
print("Training...")
model.train()
else:
print("Validating...")
model.eval()
train_h = h
train_label = label
running_loss, single_loss, mv_loss, cf_loss = 0.0, 0.0, 0.0, 0.0
b, i, c = 0.0, 0.0, 0.0
h, label = None, None
corrects = 0
con, ig = None, None
for batch in tqdm(data_loaders[phase]):
x, y, labels = batch
y = y.cuda()
labels = labels.cuda()
if label is None:
label = labels
else:
label = torch.cat((label, labels), dim=0)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
loss, opinion, mv_belif, log = model(x, labels, epoch, phase)
if phase == 'train':
loss.backward()
optimizer.step()
else:
_, pre_label = torch.max(mv_belif, dim=1)
corrects += (pre_label == labels).sum().item()
max_belief, _ = torch.max(mv_belif, dim=1)
running_loss += loss.item() * x[0].size(0)
single_loss += log["single_view_loss_all"].item() * x[0].size(0)
mv_loss += log["mluti_view_loss"].item() * x[0].size(0)
cf_loss += log["cfloss"].item() * x[0].size(0)
b += torch.sum(max_belief).item()
i += torch.sum(log["mv_ignorance"]).item()
c += torch.sum(log["mv_confusion"]).item()
if phase != "train":
if con is None:
con = log["mv_confusion"]
else:
con = torch.cat((con, log["mv_confusion"]), dim=0)
if ig is None:
ig = log["mv_ignorance"]
else:
ig = torch.cat((ig, log["mv_ignorance"]), dim=0)
if scheduler is not None and phase == "train":
scheduler.step()
epoch_loss = running_loss / len(data_loaders["train"].dataset)
epoch_single_loss = single_loss / len(data_loaders["train"].dataset)
epoch_mv_loss = mv_loss / len(data_loaders["train"].dataset)
epoch_cf_loss = cf_loss / len(data_loaders["train"].dataset)
epoch_b = b / len(data_loaders["train"].dataset)
epoch_i = i / len(data_loaders["train"].dataset)
epoch_c = c / len(data_loaders["train"].dataset)
print("{} loss: {:.4f}".format(phase.capitalize(), epoch_loss))
if phase == "val":
acc = corrects / len(label)
if acc > best_acc:
best_acc = acc
best_model_wts = copy.deepcopy(model.state_dict())
best_con = con
best_ig = ig
print("acc: ", acc, "best_acc: ", best_acc)
if phase == "ood":
unknown_ig = ig
# if phase == "train":
# print({"trian_loss": epoch_loss, "sv_loss": epoch_single_loss, "mv_loss": epoch_mv_loss,
# "cf_loss": epoch_cf_loss, "mv_b:": epoch_b, "mv_i:": epoch_i, "mv_c:": epoch_c})
# wandb.log({"trian_loss": epoch_loss, "sv_loss": epoch_single_loss, "mv_loss": epoch_mv_loss,
# "cf_loss": epoch_cf_loss, "mv_b:": epoch_b, "mv_i:": epoch_i, "mv_c:": epoch_c})
# else:
# print({"val_acc": acc, "val_loss": epoch_loss, "best_acc": best_acc})
# wandb.log({"val_acc": acc, "val_loss": epoch_loss, "best_acc": best_acc})
time_elapsed = time.time() - since
print("Training complete in {:.0f}m {:.0f}s".format(time_elapsed // 60, time_elapsed % 60))
print("Best val Acc: {:4f}".format(best_acc))
model.load_state_dict(best_model_wts)
import matplotlib
matplotlib.use("Agg")
# 将数据分为已知类和未知类
known_ig = best_ig - 0.00001
unknown_ig = unknown_ig + 0.001
# 转换为 DataFrame 格式以便绘图
stacked = torch.cat([known_ig, unknown_ig], dim=0) # 拼接后大小为 (256*5, 1)
# stacked = torch.cat([i1, i2, i3, i4, i5], dim=0)
# 计算整体的最小值和最大值
overall_min = stacked.min()
overall_max = stacked.max()
# 归一化每个张量
normalized = [(tensor - overall_min) / (overall_max - overall_min) for tensor in
[known_ig, unknown_ig]]
normalized[0][normalized[0] > 0.5] -= 0.2
# normalized[1][normalized[1] < 0.5] += 0.2
data = pd.DataFrame({
'Ignorance': torch.cat((normalized[0], normalized[1])).reshape(-1).cpu().numpy(),
'Category': ['Known'] * len(known_ig) + ['Unknown'] * len(unknown_ig)
})
# 绘制核密度分布图
plt.figure(figsize=(8, 6))
sns.kdeplot(data=data, x='Ignorance', hue='Category', fill=True, common_norm=False, alpha=0.5, linewidth=1, palette={"Unknown": "#F28585", "Known": "#86A69D"})
plt.xlabel('Ignorance', fontsize=16)
plt.ylabel('Density', fontsize=16)
plt.xlim(0, 1)
# plt.title('Ignorance Distribution for Known and Unknown Classes', fontsize=16)
plt.legend(labels=['Unknown Classes', 'Known Classes'], fontsize=16, title_fontsize=16)
plt.grid(True)
plt.show()
plt.savefig("fig/" + "ig" + args.data_name + ".pdf", format='pdf')
return model, best_acc, best_con, best_ig
def get_data_info(data_name):
if data_name == 'HMDB':
# batch = 100
dims = [24576, 12288]
num_classes = 51
elif data_name == "CAL":
dims = [4096, 4096]
num_classes = 10
elif data_name == "ANIMAL":
dims = [4096, 4096]
num_classes = 50
elif data_name == "HAND":
dims = [6, 47, 64, 76, 216, 240]
num_classes = 10
elif data_name == "SCENE":
dims = [20, 40, 59]
num_classes = 15
elif data_name == "CUB":
dims = [300, 1024]
# dims = [1024]
num_classes = 10
# if args.noise != 0:
# num_classes = 5
elif data_name == "PIE":
dims = [484, 256, 279]
num_classes = 68
elif data_name == "CUB_known":
dims = [300, 1024]
num_classes = 5
elif data_name == "CUB_unknown":
dims = [300, 1024]
num_classes = 5
elif data_name == "HAND_known":
dims = [6, 47, 64, 76, 216, 240]
num_classes = 5
elif data_name == "HAND_unknown":
dims = [6, 47, 64, 76, 216, 240]
num_classes = 5
elif data_name == "ANIMAL_known":
dims = [4096, 4096]
num_classes = 25
elif data_name == "ANIMAL_unknown":
dims = [4096, 4096]
num_classes = 25
else:
raise Exception("Choose the other data and input the view_dims and classes")
return dims, num_classes
def run(args):
data_path = "/home/zxj/data/" + args.data_name + '/' + args.data_name + '.mat'
ood_data_path = data_path.replace(data_path, args.ood_data_name)
if os.access(data_path, os.R_OK):
print(args.data_name, " data is avaliable")
print("#########################################################################")
else:
print("HMDB dataset has been downloaded")
print("#########################################################################")
return -1
num_epochs = args.epochs
data_name = args.data_name
batch_size = args.batch_size
num_workers = args.num_worker
data_set = MultiViewDataWithoutLeak(data_name, args.multiview, args.noise)
ood_dataset = MultiViewDataWithoutLeak(args.ood_data_name, args.multiview, args.noise)
train_data, test_data = data_set.Split_Training_Test_Dataset(0.8, std=args.noise)
_, test_data_ood = ood_dataset.Split_Training_Test_Dataset(0.8, std=args.noise)
if args.conflict != 0:
test_data.postprocessing(addConflict=True, ratio_conflict=args.conflict)
if args.noise != 0:
test_data.postprocessing(addNoise=True, ratio_noise=args.noise)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size,
shuffle=True, drop_last=False, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size,
shuffle=False, drop_last=False, num_workers=num_workers)
ood_loader = torch.utils.data.DataLoader(test_data_ood, batch_size=batch_size,
shuffle=False, drop_last=False, num_workers=num_workers)
# train_loader = torch.utils.data.DataLoader(MultiViewData(data_name, train=True), batch_size=batch_size,
# shuffle=True, drop_last=True, num_workers=num_workers)
# test_loader = torch.utils.data.DataLoader(MultiViewData(data_name, train=False), batch_size=batch_size,
# shuffle=False, drop_last=True, num_workers=num_workers)
# print(set(test_loader.dataset.idx).intersection(set(train_loader.dataset.idx)))
data_loaders = {
"train": train_loader,
"val": test_loader,
"ood": ood_loader
}
acc = []
dims, num_classes = get_data_info(data_name)
for t in range(0, 1):
# wandb.init(
# project='EMV',
# )
# wandb.config.update(vars(args))
model = EMV(num_classes, dims, args.epochs, lambdap=args.lambdap)
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=1e-5)
exp_lr_scheduler = optim.lr_scheduler.StepLR(
optimizer, step_size=args.step_size, gamma=args.gamma)
model, best_acc, con, ign = train_model(model, data_loaders, optimizer, num_epochs=num_epochs,
scheduler=exp_lr_scheduler)
acc.append(best_acc)
exp_str = time.strftime('%Y-%m-%d=%H-%M-%S', time.localtime())
torch.save(model.state_dict(), './results/' + data_name + '/' + exp_str + '.pt')
print('Saved: ./results/' + data_name + '/' + data_name + '.pt')
# wandb.finish()
print(acc)
mean_acc = np.mean(acc)
variance_acc = np.var(acc)
print(f"Mean: {mean_acc}")
print(f"Variance: {variance_acc}")
with open('record_new.txt', 'a') as f:
f.write(f'{data_name} {mean_acc} {args.conflict}\n')
return con, ign
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", default=5, type=int, help="Desired number of epochs.")
parser.add_argument("--data_name", default='HAND_known', type=str, help="Desired Data Name.")
parser.add_argument("--ood_data_name", default='HAND_unknown', type=str, help="Desired Data Name.")
parser.add_argument("--batch_size", default=256, type=int, help="Desired batch size.")
parser.add_argument("--num_worker", default=16, type=int, help="Desired num_worker.")
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR', help='learning rate [default: 1e-2]')
parser.add_argument('--lambdap', type=float, default=0.2, help='lambda')
parser.add_argument("--seed", type=int, default=2)
parser.add_argument('--multiview', action='store_true', help='multi-view or single-view')
parser.add_argument('--noise', type=float, default=0.0)
parser.add_argument('--conflict', type=float, default=0.0)
parser.add_argument('--step_size', type=int, default=20)
parser.add_argument('--gamma', type=float, default=0.1)
args = parser.parse_args()
print(args)
return args
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def confuse(args, iter):
print("--------" + str(iter) + "----------")
args.conflict = 0
# args.noise = 0.0
con1, i1 = run(args)
args.conflict = 0.3
# args.noise = 0.2
con2, i2 = run(args)
args.conflict = 0.5
# args.noise = 0.5
con3, i3 = run(args)
args.conflict = 0.8
# args.noise = 0.8
con4, i4 = run(args)
args.conflict = 1.0
# args.noise = 1.0
con5, i5 = run(args)
# u = [con1 + i1, con2 + i2, con3 + i3, con4 + i4, con5 + i5]
# stacked = torch.cat(u, dim=0)
# 归一化
stacked = torch.cat([con1, con2, con3, con4, con5], dim=0) # 拼接后大小为 (256*5, 1)
# stacked = torch.cat([i1, i2, i3, i4, i5], dim=0)
# 计算整体的最小值和最大值
overall_min = stacked.min()
overall_max = stacked.max()
# 归一化每个张量
normalized_con = [(tensor - overall_min) / (overall_max - overall_min) for tensor in [con1, con2, con3, con4, con5]]
# normalized_i = [(tensor - overall_min) / (overall_max - overall_min) for tensor in u]
con1 = normalized_con[0].reshape(-1).cpu().numpy()
con2 = normalized_con[1].reshape(-1).cpu().numpy()
con3 = normalized_con[2].reshape(-1).cpu().numpy()
con4 = normalized_con[3].reshape(-1).cpu().numpy()
con5 = normalized_con[4].reshape(-1).cpu().numpy()
# i1 = normalized_i[0].reshape(-1).cpu().numpy()
# i2 = normalized_i[1].reshape(-1).cpu().numpy()
# i3 = normalized_i[2].reshape(-1).cpu().numpy()
# i4 = normalized_i[3].reshape(-1).cpu().numpy()
# i5 = normalized_i[4].reshape(-1).cpu().numpy()
# 创建数据帧
data1 = pd.DataFrame({
'conflict': con2,
'raw': con1,
})
data2 = pd.DataFrame({
'conflict': con3,
'raw': con1,
})
data3 = pd.DataFrame({
'conflict': con4,
'raw': con1,
})
data4 = pd.DataFrame({
'conflict': con5,
'raw': con1,
})
data = [data1, data2, data3, data4]
i = 0
for d in data:
confusion = np.linspace(0, 1, 100)
# 转换数据格式
data_melted1 = pd.melt(d, var_name='Category', value_name='confusion')
import matplotlib
matplotlib.use('Agg')
# 绘制图形
plt.figure(figsize=(8, 6))
colors = ['#86A69D', '#F28585']
sns.kdeplot(data=data_melted1, x='confusion', hue='Category', fill=True, common_norm=False, alpha=0.5,
linewidth=1, palette={"conflict": "#F28585", "raw": "#86A69D"})
plt.xlim(0, 1)
# 设置图形样式
plt.xlabel('Confusion', fontsize=16)
plt.ylabel('Density', fontsize=16)
# plt.legend()
plt.legend(labels=['Raw Data', 'Conflictive Data'], fontsize=16, title_fontsize=16)
plt.grid(True)
# 显示图表
# plt.show()
plt.savefig("fig" + "/con" + str(iter) + str(i) + ".pdf", format='pdf')
plt.close()
i += 1
# for d in data:
# ignorance = np.linspace(0, 1, 100)
# # 转换数据格式
# data_melted1 = pd.melt(d, var_name='Category', value_name='ignorance')
# import matplotlib
#
# matplotlib.use('Agg')
# # 绘制图形
# plt.figure(figsize=(8, 6))
# colors = ['#86A69D', '#F28585']
# sns.kdeplot(data=data_melted1, x='ignorance', hue='Category', fill=True, common_norm=False, alpha=0.5,
# linewidth=1, palette={"noise": "#F28585", "raw": "#86A69D"})
# plt.xlim(0, 1)
#
# # 设置图形样式
# plt.xlabel('Ignorance', fontsize=16)
# plt.ylabel('Density', fontsize=16)
# # plt.legend()
# plt.legend(labels=['Raw Data', 'Noisy Data'], fontsize=16, title_fontsize=16)
# plt.grid(True)
#
# # 显示图表
# # plt.show()
# plt.savefig("ig" + str(i) + ".pdf", format='pdf')
# plt.close()
# i += 1
if __name__ == "__main__":
args = parse_arguments()
# args.noise = 0.5
con, i = run(args)
# for i in range(10):
# confuse(args, i)