-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathtransform.py
executable file
·286 lines (242 loc) · 11.3 KB
/
transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
#!/usr/bin/python3
import collections
import cv2
import math
import numpy as np
import numbers
import random
import torch
from mseg.taxonomy.taxonomy_converter import TaxonomyConverter
"""
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default)
for image manipulation.
"""
class Compose(object):
# Composes segtransforms: segtransform.Compose([segtransform.RandScale([0.5, 2.0]), segtransform.ToTensor()])
def __init__(self, segtransform):
self.segtransform = segtransform
def __call__(self, image, label):
for t in self.segtransform:
image, label = t(image, label)
return image, label
class ToTensor(object):
# Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
def __call__(self, image, label):
if not isinstance(image, np.ndarray) or not isinstance(label, np.ndarray):
raise (RuntimeError("segtransform.ToTensor() only handle np.ndarray"
"[eg: data readed by cv2.imread()].\n"))
if len(image.shape) > 3 or len(image.shape) < 2:
raise (RuntimeError("segtransform.ToTensor() only handle np.ndarray with 3 dims or 2 dims.\n"))
if len(image.shape) == 2:
image = np.expand_dims(image, axis=2)
if not len(label.shape) == 2:
raise (RuntimeError("segtransform.ToTensor() only handle np.ndarray labellabel with 2 dims.\n"))
image = torch.from_numpy(image.transpose((2, 0, 1)))
if not isinstance(image, torch.FloatTensor):
image = image.float()
label = torch.from_numpy(label)
if not isinstance(label, torch.LongTensor):
label = label.long()
return image, label
class ToUniversalLabel(object):
def __init__(self, dataset):
self.dataset = dataset
self.tax_converter = TaxonomyConverter()
def __call__(self, image, label):
return image, self.tax_converter.transform_label(label, self.dataset)
class Normalize(object):
# Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std
def __init__(self, mean, std=None):
if std is None:
assert len(mean) > 0
else:
assert len(mean) == len(std)
self.mean = mean
self.std = std
def __call__(self, image, label):
if self.std is None:
for t, m in zip(image, self.mean):
t.sub_(m)
else:
for t, m, s in zip(image, self.mean, self.std):
t.sub_(m).div_(s)
return image, label
class Resize(object):
# Resize the input to the given size, 'size' is a 2-element tuple or list in the order of (h, w).
def __init__(self, size):
assert (isinstance(size, collections.Iterable) and len(size) == 2)
self.size = size
def __call__(self, image, label):
image = cv2.resize(image, self.size[::-1], interpolation=cv2.INTER_LINEAR)
label = cv2.resize(label, self.size[::-1], interpolation=cv2.INTER_NEAREST)
return image, label
class ResizeShort(object):
# Resize the input to the given size, 'size' is a 2-element tuple or list in the order of (h, w).
def __init__(self, size):
# assert (isinstance(size, collections.Iterable) and len(size) == 2)
self.size = size
def __call__(self, image, label):
# print()
# print(image.shape, label.shape)
# output =
old_image_shape, old_label_shape = image.shape, label.shape
h, w = image.shape[0], image.shape[1]
shorter_size = min(h, w)
if shorter_size == h:
new_h = self.size
scale = new_h / float(h)
new_w = int(w * scale)
else:
new_w = self.size
scale = new_w / float(w)
new_h = int(h * scale)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR)
label = cv2.resize(label, (new_w, new_h), interpolation=cv2.INTER_NEAREST)
# print(image.shape, label.shape, old_image_shape, old_label_shape)
# exit()
# print(image.shape, label.shape)
return image, label
class RandScale(object):
# Randomly resize image & label with scale factor in [scale_min, scale_max]
def __init__(self, scale, aspect_ratio=None):
assert (isinstance(scale, collections.Iterable) and len(scale) == 2)
if isinstance(scale, collections.Iterable) and len(scale) == 2 \
and isinstance(scale[0], numbers.Number) and isinstance(scale[1], numbers.Number) \
and 0 < scale[0] < scale[1]:
self.scale = scale
else:
raise (RuntimeError("segtransform.RandScale() scale param error.\n"))
if aspect_ratio is None:
self.aspect_ratio = aspect_ratio
elif isinstance(aspect_ratio, collections.Iterable) and len(aspect_ratio) == 2 \
and isinstance(aspect_ratio[0], numbers.Number) and isinstance(aspect_ratio[1], numbers.Number) \
and 0 < aspect_ratio[0] < aspect_ratio[1]:
self.aspect_ratio = aspect_ratio
else:
raise (RuntimeError("segtransform.RandScale() aspect_ratio param error.\n"))
def __call__(self, image, label):
temp_scale = self.scale[0] + (self.scale[1] - self.scale[0]) * random.random()
temp_aspect_ratio = 1.0
if self.aspect_ratio is not None:
temp_aspect_ratio = self.aspect_ratio[0] + (self.aspect_ratio[1] - self.aspect_ratio[0]) * random.random()
temp_aspect_ratio = math.sqrt(temp_aspect_ratio)
scale_factor_x = temp_scale * temp_aspect_ratio
scale_factor_y = temp_scale / temp_aspect_ratio
image = cv2.resize(image, None, fx=scale_factor_x, fy=scale_factor_y, interpolation=cv2.INTER_LINEAR)
label = cv2.resize(label, None, fx=scale_factor_x, fy=scale_factor_y, interpolation=cv2.INTER_NEAREST)
return image, label
class Crop(object):
"""Crops the given ndarray image (H*W*C or H*W).
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is made.
"""
def __init__(self, size, crop_type='center', padding=None, ignore_label=255):
if isinstance(size, int):
self.crop_h = size
self.crop_w = size
elif isinstance(size, collections.Iterable) and len(size) == 2 \
and isinstance(size[0], int) and isinstance(size[1], int) \
and size[0] > 0 and size[1] > 0:
self.crop_h = size[0]
self.crop_w = size[1]
else:
raise (RuntimeError("crop size error.\n"))
if crop_type == 'center' or crop_type == 'rand':
self.crop_type = crop_type
else:
raise (RuntimeError("crop type error: rand | center\n"))
if padding is None:
self.padding = padding
elif isinstance(padding, list):
if all(isinstance(i, numbers.Number) for i in padding):
self.padding = padding
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if len(padding) != 3:
raise (RuntimeError("padding channel is not equal with 3\n"))
else:
raise (RuntimeError("padding in Crop() should be a number list\n"))
if isinstance(ignore_label, int):
self.ignore_label = ignore_label
else:
raise (RuntimeError("ignore_label should be an integer number\n"))
def __call__(self, image, label):
h, w = label.shape
pad_h = max(self.crop_h - h, 0)
pad_w = max(self.crop_w - w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
if pad_h > 0 or pad_w > 0:
if self.padding is None:
raise (RuntimeError("segtransform.Crop() need padding while padding argument is None\n"))
image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.padding)
label = cv2.copyMakeBorder(label, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=self.ignore_label)
h, w = label.shape
if self.crop_type == 'rand':
h_off = random.randint(0, h - self.crop_h)
w_off = random.randint(0, w - self.crop_w)
else:
h_off = int((h - self.crop_h) / 2)
w_off = int((w - self.crop_w) / 2)
image = image[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
label = label[h_off:h_off+self.crop_h, w_off:w_off+self.crop_w]
return image, label
class RandRotate(object):
# Randomly rotate image & label with rotate factor in [rotate_min, rotate_max]
def __init__(self, rotate, padding, ignore_label=255, p=0.5):
assert (isinstance(rotate, collections.Iterable) and len(rotate) == 2)
if isinstance(rotate[0], numbers.Number) and isinstance(rotate[1], numbers.Number) and rotate[0] < rotate[1]:
self.rotate = rotate
else:
raise (RuntimeError("segtransform.RandRotate() scale param error.\n"))
assert padding is not None
assert isinstance(padding, list) and len(padding) == 3
if all(isinstance(i, numbers.Number) for i in padding):
self.padding = padding
else:
raise (RuntimeError("padding in RandRotate() should be a number list\n"))
assert isinstance(ignore_label, int)
self.ignore_label = ignore_label
self.p = p
def __call__(self, image, label):
if random.random() < self.p:
angle = self.rotate[0] + (self.rotate[1] - self.rotate[0]) * random.random()
h, w = label.shape
matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
image = cv2.warpAffine(image, matrix, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=self.padding)
label = cv2.warpAffine(label, matrix, (w, h), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=self.ignore_label)
return image, label
class RandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, image, label):
if random.random() < self.p:
image = cv2.flip(image, 1)
label = cv2.flip(label, 1)
return image, label
class RandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, image, label):
if random.random() < self.p:
image = cv2.flip(image, 0)
label = cv2.flip(label, 0)
return image, label
class RandomGaussianBlur(object):
def __init__(self, radius=5):
self.radius = radius
def __call__(self, image, label):
if random.random() < 0.5:
image = cv2.GaussianBlur(image, (self.radius, self.radius), 0)
return image, label
class RGB2BGR(object):
# Converts image from RGB order to BGR order, for model initialized from Caffe
def __call__(self, image, label):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
return image, label
class BGR2RGB(object):
# Converts image from BGR order to RGB order, for model initialized from Pytorch
def __call__(self, image, label):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image, label