Skip to content

Commit 442bd3f

Browse files
🧑‍💻 pre-commit autoupdate (TissueImageAnalytics#891)
<!--pre-commit.ci start--> updates: - [github.com/executablebooks/mdformat: 0.7.18 → 0.7.19](hukkin/mdformat@0.7.18...0.7.19) --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Shan E Ahmed Raza <13048456+shaneahmed@users.noreply.github.com>
1 parent 741463c commit 442bd3f

File tree

3 files changed

+14
-14
lines changed

3 files changed

+14
-14
lines changed

.pre-commit-config.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ repos:
2323
- mdformat-black
2424
- mdformat-myst
2525
- repo: https://github.com/executablebooks/mdformat
26-
rev: 0.7.18
26+
rev: 0.7.19
2727
hooks:
2828
- id: mdformat
2929
# Optionally add plugins

HISTORY.md

+9-9
Original file line numberDiff line numberDiff line change
@@ -64,7 +64,7 @@
6464

6565
### Major Updates and Feature Improvements
6666

67-
- Adds Python 3.11 support \[experimental\] #500
67+
- Adds Python 3.11 support [experimental] #500
6868
- Python 3.11 is not fully supported by `pytorch` https://github.com/pytorch/pytorch/issues/86566 and `openslide` https://github.com/openslide/openslide-python/pull/188
6969
- Removes Python 3.7 support
7070
- This allows upgrading all the dependencies which were dependent on an older version of Python.
@@ -181,7 +181,7 @@ None
181181
- Adds DICE metric
182182
- Adds [SCCNN](https://doi.org/10.1109/tmi.2016.2525803) architecture. \[[read the docs](https://tia-toolbox.readthedocs.io/en/develop/_autosummary/tiatoolbox.models.architecture.sccnn.SCCNN.html)\]
183183
- Adds [MapDe](https://arxiv.org/abs/1806.06970) architecture. \[[read the docs](https://tia-toolbox.readthedocs.io/en/develop/_autosummary/tiatoolbox.models.architecture.mapde.MapDe.html)\]
184-
- Adds support for reading MPP metadata from NGFF v0.4
184+
- Adds support for reading MPP metadata from NGFF v0.4
185185
- Adds enhancements to tiatoolbox.annotation.storage that are useful when using an AnnotationStore for visualization purposes.
186186

187187
### Changes to API
@@ -196,7 +196,7 @@ None
196196
- Fixes nucleus_segmentor_engine for boundary artefacts
197197
- Fixes the colorbar cropping in tests
198198
- Adds citation in README.md and CITATION.cff to Nature Communications Medicine paper
199-
- Fixes a bug #452 raised by @rogertrullo where only the numerator of the TIFF resolution tags was being read.
199+
- Fixes a bug #452 raised by @rogertrullo where only the numerator of the TIFF resolution tags was being read.
200200
- Fixes HoVer-Net+ post-processing to be inline with original work.
201201
- Fixes a bug where an exception would be raised if the OME XML is missing objective power.
202202

@@ -337,7 +337,7 @@ None
337337
### Major Updates and Feature Improvements
338338

339339
- Adds nucleus instance segmentation base class
340-
- Adds [HoVerNet](https://www.sciencedirect.com/science/article/abs/pii/S1361841519301045) architecture
340+
- Adds [HoVerNet](https://www.sciencedirect.com/science/article/abs/pii/S1361841519301045) architecture
341341
- Adds multi-task segmentor [HoVerNet+](https://arxiv.org/abs/2108.13904) model
342342
- Adds <a href="https://www.thelancet.com/journals/landig/article/PIIS2589-7500(2100180-1/fulltext">IDaRS</a> pipeline
343343
- Adds [SlideGraph](https://arxiv.org/abs/2110.06042) pipeline
@@ -358,7 +358,7 @@ None
358358

359359
### Bug Fixes and Other Changes
360360

361-
- Fixes Fix `filter_coordinates` read wrong resolutions for patch extraction
361+
- Fixes `filter_coordinates` read wrong resolutions for patch extraction
362362
- For `PatchPredictor`
363363
- `ioconfig` will supersede everything
364364
- if `ioconfig` is not provided
@@ -410,7 +410,7 @@ None
410410
- Adds dependencies for tiffile, imagecodecs, zarr.
411411
- Adds more stringent pre-commit checks
412412
- Moved local test files into `tiatoolbox/data`.
413-
- Fixed `Manifest.ini` and added `tiatoolbox/data`. This means that this directory will be downloaded with the package.
413+
- Fixed `Manifest.ini` and added `tiatoolbox/data`. This means that this directory will be downloaded with the package.
414414
- Using `pkg_resources` to properly load bundled resources (e.g. `target_image.png`) in `tiatoolbox.data`.
415415
- Removed duplicate code in `conftest.py` for downloading remote files. This is now in `tiatoolbox.data._fetch_remote_file`.
416416
- Fixes errors raised by new flake8 rules.
@@ -513,9 +513,9 @@ ______________________________________________________________________
513513
- `read_bounds` takes a tuple (left, top, right, bottom) of coordinates in baseline (level 0) reference frame and returns a region bounded by those.
514514
- `read_rect` takes one coordinate in baseline reference frame and an output size in pixels.
515515
- Adds `VirtualWSIReader` as a subclass of WSIReader which can be used to read visual fields (tiles).
516-
- `VirtualWSIReader` accepts ndarray or image path as input.
517-
- Adds MPP fall back to standard TIFF resolution tags with warning.
518-
- If OpenSlide cannot determine microns per pixel (`mpp`) from the metadata, checks the TIFF resolution units (TIFF tags: `ResolutionUnit`, `XResolution` and `YResolution`) to calculate MPP. Additionally, add function to estimate missing objective power if MPP is known of derived from TIFF resolution tags.
516+
- `VirtualWSIReader` accepts ndarray or image path as input.
517+
- Adds MPP fall back to standard TIFF resolution tags with warning.
518+
- If OpenSlide cannot determine microns per pixel (`mpp`) from the metadata, checks the TIFF resolution units (TIFF tags: `ResolutionUnit`, `XResolution` and `YResolution`) to calculate MPP. Additionally, add function to estimate missing objective power if MPP is known of derived from TIFF resolution tags.
519519
- Estimates missing objective power from MPP with warning.
520520
- Adds example notebooks for stain normalisation and WSI reader.
521521
- Adds caching to slide info property. This is done by checking if a private `self._m_info` exists and returning it if so, otherwise `self._info` is called to create the info for the first time (or to force regenerating) and the result is assigned to `self._m_info`. This could in future be made much simpler with the `functools.cached_property` decorator in Python 3.8+.

examples/README.md

+4-4
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ We now give a list of our Jupyter notebooks, giving a brief description of the T
2828

2929
### 1- Reading Whole Slide Images ([01-wsi-reading](./01-wsi-reading.ipynb))
3030

31-
This notebook shows how to use TIAToolbox to read different kinds of WSIs. TIAToolbox provides a uniform interface to various WSI formats. To see what formats are dealt with, click [here](https://tia-toolbox.readthedocs.io/en/latest/usage.html?highlight=wsiread#tiatoolbox.wsicore.wsireader.WSIReader) and then search for _format_. In this notebook, you will learn some well-known techniques for WSI masking and patch extraction.
31+
This notebook shows how to use TIAToolbox to read different kinds of WSIs. TIAToolbox provides a uniform interface to various WSI formats. To see what formats are dealt with, click [here](https://tia-toolbox.readthedocs.io/en/latest/usage.html?highlight=wsiread#tiatoolbox.wsicore.wsireader.WSIReader) and then search for _format_. In this notebook, you will learn some well-known techniques for WSI masking and patch extraction.
3232

3333
[![image](../docs/images/wsi-reading.png)](./01-wsi-reading.ipynb)
3434

@@ -77,7 +77,7 @@ This notebook is aimed at advanced users of TIAToolbox, familiar with object-ori
7777

7878
### 8- Nucleus instance segmentation in whole slide images using the HoVer-Net model ([08-nucleus-instance-segmentation](./08-nucleus-instance-segmentation.ipynb))
7979

80-
Each WSI can contain up to a million nuclei of various types. These can analysed systematically and used for predicting clinical outcomes. Nucleus segmentation and classification must be carried out before using nuclear features in downstream analysis. In this example, we will demonstrate the use of the TIAToolbox implementation of the [HoVer-Net model](https://www.sciencedirect.com/science/article/pii/S1361841519301045) to solve the problem of nucleus instance segmentation and classification.
80+
Each WSI can contain up to a million nuclei of various types. These can analysed systematically and used for predicting clinical outcomes. Nucleus segmentation and classification must be carried out before using nuclear features in downstream analysis. In this example, we will demonstrate the use of the TIAToolbox implementation of the [HoVer-Net model](https://www.sciencedirect.com/science/article/pii/S1361841519301045) to solve the problem of nucleus instance segmentation and classification.
8181

8282
[![image](../docs/images/hovernet.png)](./08-nucleus-instance-segmentation.ipynb)
8383

@@ -89,11 +89,11 @@ Each WSI consists of a multitude of different tissue types, each containing many
8989

9090
### 10- Image Alignment ([10-wsi_registration](./10-wsi-registration.ipynb))
9191

92-
This notebook presents an example to show how to use TIAToolbox for registration of an image pair using [Deep Feature Based Registration](https://arxiv.org/pdf/2202.09971.pdf) (DFBR) \[1\], followed by non-rigid alignment using [SimpleITK](https://simpleitk.readthedocs.io/en/master/registrationOverview.html). The registration tool in the TIAToolbox also comprises a pre-alignment step, a pre-requisite to DFBR. In particular, we will introduce the use of our registration tool `wsi_registration`.
92+
This notebook presents an example to show how to use TIAToolbox for registration of an image pair using [Deep Feature Based Registration](https://arxiv.org/pdf/2202.09971.pdf) (DFBR) [1], followed by non-rigid alignment using [SimpleITK](https://simpleitk.readthedocs.io/en/master/registrationOverview.html). The registration tool in the TIAToolbox also comprises a pre-alignment step, a pre-requisite to DFBR. In particular, we will introduce the use of our registration tool `wsi_registration`.
9393

9494
In this example, the affine transformation is computed using thumbnails of the fixed and moving images. The estimated transformation is then used to extract corresponding tiles from both fixed and moving images at a higher magnification level. The non-rigid deformation between the two tiles is then dealt with using the SimpleITK.
9595

96-
\[1\] Awan, Ruqayya, et al. "Deep Feature based Cross-slide Registration." arXiv preprint arXiv:2202.09971 (2022).
96+
[1] Awan, Ruqayya, et al. "Deep Feature based Cross-slide Registration." arXiv preprint arXiv:2202.09971 (2022).
9797

9898
[![image](../docs/images/wsi-registration.png)](./10-wsi-registration.ipynb)
9999

0 commit comments

Comments
 (0)