-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path_targets.R
64 lines (55 loc) · 1.74 KB
/
_targets.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
# Hit your reproducibility {targets}!
# UK Government Data Science Festival, 2020-09-29
# This script was generated in the working directory by tar_script() and then I
# added the code for my pipeline. This is the example pipeline for generating
# a report on beavers that I used in the talk.
# Attach {targets} by default
library(targets)
# This is an example target script.
# Read the tar_script() help file for details.
# Define custom functions and other global objects.
# This is where you write source(\"R/functions.R\")
# if you keep your functions in external scripts.
# Simple bespoke plot function
b_plot <- function(data, image) {
ggplot(data, aes(id, temp)) +
geom_boxplot() +
labs(title = "Beavers temperatures") +
add_phylopic(image)
}
# Simple bespoke summary table
b_table <- function(data) {
data %>%
group_by(id) %>%
summarise(
mean = mean(temp), sd = sd(temp),
min = min(temp, max = max(temp)
),
.groups = "drop"
)
}
# Set target-specific options such as packages.
tar_option_set(
packages = c(
"targets", "tarchetypes",
"dplyr", "ggplot2", "rphylopic",
"knitr"
)
)
# Define targets
targets <- list(
# Prepare inputs
tar_target(b1, mutate(beaver1, id = "A")),
tar_target(b2, mutate(beaver2, id = "B")),
tar_target(beavers, bind_rows(b1, b2)),
tar_target(uid, "be8670c2-a5bd-4b44-88e8-92f8b0c7f4c6"),
tar_target(png, image_data(uid, size = "512")[[1]]),
# Prepare outputs
tar_target(plot, b_plot(beavers, png)),
tar_target(table, b_table(beavers)),
# Create report
tarchetypes::tar_render(report, "report-beavers.Rmd")
)
# End with a call to tar_pipeline() to wrangle the targets together.
# This target script must return a pipeline object.
tar_pipeline(targets)