Given an integer array
nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.Follow up: If you have figured out the
O(n)
solution, try coding another solution using the divide and conquer approach, which is more subtle.Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4] Output: 6 Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1] Output: 1
Example 3:
Input: nums = [0] Output: 0
Example 4:
Input: nums = [-1] Output: -1
Example 5:
Input: nums = [-2147483647] Output: -2147483647
TODO add explanation to solutions
// 12/08/2020 approach using sum[i -> j] = sum[0->j] - sum[0->i]
int maxSubArray(vector<int>& nums) {
int maxsum = nums[0];
for(int i = 0, sz = nums.size(), sum=0, minsum=0; i != sz; ++i){
sum += nums[i];
maxsum=max(maxsum, sum-minsum);
minsum=min(minsum, sum);
}
return maxsum;
}
// 27/02/2020
int maxSubArray(vector<int>& nums) {
if(nums.size()==1)
return nums[0];
int sum;
int max;
for(int i = 0; i < nums.size(); i++){
if(i == 0){
sum = nums[i];
max = sum;
}
else
sum += nums[i];
if(sum > max)
max = sum;
if (sum < 0)
sum = 0;
}
return max;
}