-
Notifications
You must be signed in to change notification settings - Fork 85
/
Copy pathgen_answer.py
190 lines (163 loc) · 7.64 KB
/
gen_answer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""Generate answers using api endpoints.
Usage:
python gen_api_answer --parallel 32
"""
import argparse
import json
import os
import re
import time
import concurrent.futures
import tiktoken
import shortuuid
import tqdm
from add_markdown_info import count_markdown_elements, remove_pattern
from utils import (
load_questions,
load_model_answers,
make_config,
get_endpoint,
chat_completion_openai,
chat_completion_anthropic,
chat_completion_openai_azure,
chat_completion_mistral,
http_completion_gemini,
chat_completion_cohere,
reorg_answer_file,
OPENAI_MODEL_LIST,
temperature_config,
)
def get_answer(
question: dict, model: str, endpoint_info: dict, num_choices: int, max_tokens: int, temperature: float, answer_file: str, api_dict: dict
):
if question["category"] in temperature_config:
temperature = temperature_config[question["category"]]
api_type = endpoint_info["api_type"]
conv = []
if "system_prompt" in endpoint_info.keys():
conv.append({"role": "system", "content": endpoint_info["system_prompt"]})
elif model in OPENAI_MODEL_LIST:
conv.append({"role": "system", "content": "You are a helpful assistant."})
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
choices = []
for i in range(num_choices):
turns = []
for j in range(len(question["turns"])):
conv.append({"role": "user", "content": question["turns"][j]["content"]})
if api_type == "anthropic":
output = chat_completion_anthropic(model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens)
elif api_type == "mistral":
output = chat_completion_mistral(model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens)
elif api_type == "gemini":
output = http_completion_gemini(model=endpoint_info["model_name"],
message=question["turns"][j]["content"],
temperature=temperature,
max_tokens=max_tokens)
elif api_type == "azure":
output = chat_completion_openai_azure(model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict)
elif api_type == "cohere":
output = chat_completion_cohere(model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens)
else:
output = chat_completion_openai(model=endpoint_info["model_name"],
messages=conv,
temperature=temperature,
max_tokens=max_tokens,
api_dict=api_dict)
conv.append({"role": "assistant", "content": output})
turns.append({"content": output})
choices.append({"index": i, "turns": turns})
# Dump answers
ans = {
"question_id": question["question_id"],
"answer_id": shortuuid.uuid(),
"model_id": model,
"choices": choices,
"tstamp": time.time(),
}
if len(choices) == len(turns) == 1:
metadata = {"token_len": len(encoding.encode(output,
disallowed_special=()))}
ans["conv_metadata"] = metadata | count_markdown_elements(remove_pattern(output,
re.compile("```([^`]*)```")),
suffix="")
os.makedirs(os.path.dirname(answer_file), exist_ok=True)
with open(answer_file, "a") as fout:
fout.write(json.dumps(ans) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--setting-file", type=str, default="config/gen_answer_config.yaml"
)
parser.add_argument(
"--endpoint-file", type=str, default="config/api_config.yaml"
)
args = parser.parse_args()
settings = make_config(args.setting_file)
endpoint_list = make_config(args.endpoint_file)
existing_answer = load_model_answers(os.path.join("data", settings["bench_name"], "model_answer"))
print(settings)
for model in settings["model_list"]:
assert model in endpoint_list
endpoint_info = endpoint_list[model]
question_file = os.path.join("data", settings["bench_name"], "question.jsonl")
questions = load_questions(question_file)
answer_file = os.path.join("data", settings["bench_name"], "model_answer", f"{model}.jsonl")
print(f"Output to {answer_file}")
if "parallel" in endpoint_info:
parallel = endpoint_info["parallel"]
else:
parallel = 1
# We want to maximizes the number of tokens generate per answer: max_tokens = specified token # - input tokens #
if "tokenizer" in endpoint_info:
question_list = [question["turns"][0]["content"] for question in questions]
if model in OPENAI_MODEL_LIST:
tokenizer = tiktoken.encoding_for_model(endpoint_info["model_name"])
tokens = [tokenizer.encode(prompt) for prompt in question_list]
max_tokens = [(settings["max_tokens"] - len(token) - 100) for token in tokens]
else:
from transformers import AutoTokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"
tokenizer = AutoTokenizer.from_pretrained(endpoint_info["tokenizer"])
tokens = tokenizer(question_list)
max_tokens = [(settings["max_tokens"] - len(prompt) - 300) for prompt in tokens["input_ids"]]
else:
max_tokens = [settings["max_tokens"]] * len(questions)
with concurrent.futures.ThreadPoolExecutor(max_workers=parallel) as executor:
futures = []
count = 0
for index, question in enumerate(questions):
if model in existing_answer and question["question_id"] in existing_answer[model]:
count += 1
continue
future = executor.submit(
get_answer,
question,
model,
endpoint_info,
settings["num_choices"],
max_tokens[index],
settings["temperature"],
answer_file,
get_endpoint(endpoint_info["endpoints"]),
)
futures.append(future)
if count > 0:
print(f"{count} number of existing answers")
for future in tqdm.tqdm(
concurrent.futures.as_completed(futures), total=len(futures)
):
future.result()
reorg_answer_file(answer_file)