-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmaximum-subarray.js
47 lines (44 loc) · 1.32 KB
/
maximum-subarray.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/**
* Source: https://leetcode.com/problems/maximum-subarray/
* Tags: [Divide and Conquer,Array,Dynamic Programming]
* Level: Medium
* Title: Maximum Subarray
* Auther: @imcoddy
* Content: Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
*
*
* For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
* the contiguous subarray [4,−1,2,1] has the largest sum = 6.
*
*
* click to show more practice.
*
* More practice:
*
* If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
*/
/**
* @param {number[]} nums
* @return {number}
*/
/**
* Memo: Dynamic Programming. Let s[i] = largest maximum-subarray till element i, than it comes from only two
* 1, previous best result plus current number.
* 2, abandon previous result and use only current number.
* Runtime: 147ms
* Tests: 201 test cases passed
* Rank: A
*/
//TODO add divide and conquer solution
var maxSubArray = function(nums) {
var s = [nums[0]];
var max = s[0];
for (var i = 1; i < nums.length; i++) {
s[i] = Math.max(s[i - 1] + nums[i], nums[i]);
if (s[i] > max) {
max = s[i];
}
}
return max;
};
console.log(maxSubArray([-2, 1, -3, 4, -1, 2, 1, -5, 4]));