|
1 |
| - |
| 1 | +================= |
2 | 2 | PyTorch-Struct
|
3 |
| -========================================== |
| 3 | +================= |
4 | 4 |
|
5 | 5 | .. toctree::
|
6 |
| - :maxdepth: 2 |
| 6 | + :maxdepth: 3 |
7 | 7 | :caption: Contents:
|
8 | 8 |
|
9 |
| -Introduction |
10 |
| -============ |
11 |
| - |
12 |
| -A library for structured prediction. |
13 |
| - |
14 |
| - |
15 |
| - |
16 |
| -Distributional Interface |
17 |
| -======================== |
18 |
| - |
19 |
| - |
20 |
| -The main interface is through a structured distribution objects. Each |
21 |
| -of these implement a conditional random field over a class of |
22 |
| -structures. Roughly, these represent specialized softmax's over |
23 |
| -exponentially sized spaces. Each distribution object takes in |
24 |
| -log_potentials (generalized logits) and can return properties of the |
25 |
| -distribution. The properties of interest are, |
26 |
| - |
27 |
| -* Partition (e.g. logsumexp) |
28 |
| -* Marginals (e.g. softmax) |
29 |
| -* Argmax |
30 |
| -* Entropy |
31 |
| -* Samples |
32 |
| -* to_event / from_event (adapters) |
33 |
| - |
34 |
| - |
35 |
| -.. autoclass:: torch_struct.StructDistribution |
36 |
| - :members: |
37 |
| - |
38 |
| -Linear Chain |
39 |
| --------------- |
40 |
| - |
41 |
| -.. autoclass:: torch_struct.LinearChainCRF |
42 |
| - |
43 |
| - |
44 |
| -Semi-Markov |
45 |
| --------------- |
46 |
| - |
47 |
| -.. autoclass:: torch_struct.SemiMarkovCRF |
48 |
| - |
49 |
| - |
50 |
| -Dependency Tree |
51 |
| ----------------- |
52 |
| - |
53 |
| - |
54 |
| -.. autoclass:: torch_struct.DependencyCRF |
55 |
| - |
56 |
| - |
57 |
| -Binary Tree |
58 |
| --------------- |
59 |
| - |
60 |
| -.. autoclass:: torch_struct.TreeCRF |
61 |
| - |
62 |
| -Context-Free Grammar |
63 |
| ---------------------- |
64 |
| - |
65 |
| -.. autoclass:: torch_struct.SentCFG |
66 |
| - |
67 |
| - |
68 |
| - |
69 |
| - |
70 |
| - |
71 |
| -Networks |
72 |
| -=========== |
73 |
| - |
74 |
| -Common structured networks. |
75 |
| - |
76 |
| - |
77 |
| -.. autoclass:: torch_struct.networks.TreeLSTM |
78 |
| - |
79 |
| -.. autoclass:: torch_struct.networks.NeuralCFG |
80 |
| - |
81 |
| -.. autoclass:: torch_struct.networks.SpanLSTM |
82 |
| - |
83 |
| - |
84 |
| -Data |
85 |
| -==== |
86 |
| - |
87 |
| -Datasets for common structured prediction tasks. |
88 |
| - |
89 |
| -.. autoclass:: torch_struct.data.ConllXDataset |
90 |
| -.. autoclass:: torch_struct.data.ListOpsDataset |
91 |
| - |
92 |
| - |
93 |
| -Advanced Usage: Semirings |
94 |
| -========================= |
95 |
| - |
96 |
| -All of the distributional code is implemented through a series of |
97 |
| -semiring objects. These are passed through dynamic programming |
98 |
| -backends to compute the distributions. |
99 |
| - |
100 |
| - |
101 |
| -Standard Semirings |
102 |
| ------------------- |
103 |
| - |
104 |
| -.. autoclass:: torch_struct.LogSemiring |
105 |
| -.. autoclass:: torch_struct.StdSemiring |
106 |
| -.. autoclass:: torch_struct.MaxSemiring |
107 |
| - |
108 |
| -Higher-Order Semirings |
109 |
| ----------------------- |
110 |
| -.. autoclass:: torch_struct.EntropySemiring |
111 |
| - |
112 |
| -Sampling Semirings |
113 |
| ----------------------- |
114 |
| - |
115 |
| -.. autoclass:: torch_struct.SampledSemiring |
116 |
| -.. autoclass:: torch_struct.MultiSampledSemiring |
117 |
| - |
118 |
| - |
119 |
| -Dynamic Programming |
120 |
| -------------------- |
121 |
| - |
122 |
| -.. autoclass:: torch_struct.LinearChain |
123 |
| -.. autoclass:: torch_struct.SemiMarkov |
124 |
| -.. autoclass:: torch_struct.DepTree |
125 |
| -.. autoclass:: torch_struct.CKY |
126 |
| - |
| 9 | + README |
| 10 | + model |
| 11 | + networks |
| 12 | + advanced |
| 13 | + refs |
127 | 14 |
|
128 | 15 |
|
129 |
| -References |
130 |
| -========== |
131 | 16 |
|
132 |
| -.. bibliography:: refs.bib |
133 | 17 |
|
134 | 18 |
|
135 | 19 | Indices and tables
|
|
0 commit comments