-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathsemimarkov.py
216 lines (184 loc) · 7.65 KB
/
semimarkov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
from .helpers import _Struct
class SemiMarkov(_Struct):
"""
edge : b x N x K x C x C semimarkov potentials
"""
def _check_potentials(self, edge, lengths=None):
batch, N_1, K, C, C2 = self._get_dimension(edge)
edge = self.semiring.convert(edge)
N = N_1 + 1
if lengths is None:
lengths = torch.LongTensor([N] * batch).to(edge.device)
assert max(lengths) <= N, "Length longer than edge scores"
assert max(lengths) == N, "At least one in batch must be length N"
assert C == C2, "Transition shape doesn't match"
return edge, batch, N, K, C, lengths
def logpartition(self, log_potentials, lengths=None, force_grad=False):
"Compute forward pass by linear scan"
# Setup
semiring = self.semiring
ssize = semiring.size()
log_potentials.requires_grad_(True)
log_potentials, batch, N, K, C, lengths = self._check_potentials(
log_potentials, lengths
)
log_N, bin_N = self._bin_length(N - 1)
init = self._chart(
(batch, bin_N, K - 1, K - 1, C, C), log_potentials, force_grad
)
# Init.
mask = torch.zeros(*init.shape).bool()
mask[:, :, :, 0, 0].diagonal(0, -2, -1).fill_(True)
init = semiring.fill(init, mask, semiring.one)
# Length mask
big = torch.zeros(
ssize,
batch,
bin_N,
K,
C,
C,
dtype=log_potentials.dtype,
device=log_potentials.device,
)
big[:, :, : N - 1] = log_potentials
c = init[:, :, :].view(ssize, batch * bin_N, K - 1, K - 1, C, C)
lp = big[:, :, :].view(ssize, batch * bin_N, K, C, C)
mask = torch.arange(bin_N).view(1, bin_N).expand(batch, bin_N)
mask = mask.to(log_potentials.device)
mask = mask >= (lengths - 1).view(batch, 1)
mask = mask.view(batch * bin_N, 1, 1, 1).to(lp.device)
lp.data[:] = semiring.fill(lp.data, mask, semiring.zero)
c.data[:, :, :, 0] = semiring.fill(c.data[:, :, :, 0], (~mask), semiring.zero)
c[:, :, : K - 1, 0] = semiring.sum(
torch.stack([c.data[:, :, : K - 1, 0], lp[:, :, 1:K]], dim=-1)
)
end = torch.min(lengths) - 1
mask = torch.zeros(*init.shape).bool()
for k in range(1, K - 1):
mask[:, :, : end - (k - 1), k - 1, k].diagonal(0, -2, -1).fill_(True)
init = semiring.fill(init, mask, semiring.one)
K_1 = K - 1
# Order n, n-1
chart = (
init.permute(0, 1, 2, 3, 5, 4, 6)
.contiguous()
.view(-1, batch, bin_N, K_1 * C, K_1 * C)
)
for n in range(1, log_N + 1):
chart = semiring.matmul(chart[:, :, 1::2], chart[:, :, 0::2])
final = chart.view(-1, batch, K_1, C, K_1, C)
v = semiring.sum(semiring.sum(final[:, :, 0, :, 0, :].contiguous()))
return v, [log_potentials]
# def _dp_standard(self, edge, lengths=None, force_grad=False):
# semiring = self.semiring
# ssize = semiring.size()
# edge, batch, N, K, C, lengths = self._check_potentials(edge, lengths)
# edge.requires_grad_(True)
# # Init
# # All paths starting at N of len K
# alpha = self._make_chart(1, (batch, N, K, C), edge, force_grad)[0]
# # All paths finishing at N with label C
# beta = self._make_chart(N, (batch, C), edge, force_grad)
# semiring.one_(beta[0].data)
# # Main.
# for n in range(1, N):
# alpha[:, :, n - 1] = semiring.dot(
# beta[n - 1].view(ssize, batch, 1, 1, C),
# edge[:, :, n - 1].view(ssize, batch, K, C, C),
# )
# t = max(n - K, -1)
# f1 = torch.arange(n - 1, t, -1)
# f2 = torch.arange(1, len(f1) + 1)
# beta[n][:] = semiring.sum(
# torch.stack([alpha[:, :, a, b] for a, b in zip(f1, f2)], dim=-1)
# )
# v = semiring.sum(
# torch.stack([beta[l - 1][:, i] for i, l in enumerate(lengths)], dim=1)
# )
# return v, [edge], beta
@staticmethod
def to_parts(sequence, extra, lengths=None):
"""
Convert a sequence representation to edges
Parameters:
sequence : b x N long tensors in [-1, 0, C-1]
extra : number of states
lengths: b long tensor of N values
Returns:
edge : b x (N-1) x K x C x C semimarkov potentials
(t x z_t x z_{t-1})
"""
C, K = extra
batch, N = sequence.shape
labels = torch.zeros(batch, N - 1, K, C, C).long()
if lengths is None:
lengths = torch.LongTensor([N] * batch)
for b in range(batch):
last = None
c = None
for n in range(0, N):
if sequence[b, n] == -1:
assert n != 0
continue
else:
new_c = sequence[b, n]
if n != 0:
labels[b, last, n - last, new_c, c] = 1
last = n
c = new_c
return labels
@staticmethod
def from_parts(edge):
"""
Convert a edges to a sequence representation.
Parameters:
edge : b x (N-1) x K x C x C semimarkov potentials
(t x z_t x z_{t-1})
Returns:
sequence : b x N long tensors in [-1, 0, C-1]
"""
batch, N_1, K, C, _ = edge.shape
N = N_1 + 1
labels = torch.zeros(batch, N).long().fill_(-1)
on = edge.nonzero()
for i in range(on.shape[0]):
if on[i][1] == 0:
labels[on[i][0], on[i][1]] = on[i][4]
labels[on[i][0], on[i][1] + on[i][2]] = on[i][3]
# print(edge.nonzero(), labels)
return labels, (C, K)
# Adapters
@staticmethod
def hsmm(init_z_1, transition_z_to_z, transition_z_to_l, emission_n_l_z):
"""
Convert HSMM log-probs to edge scores.
Parameters:
init_z_1: C or b x C (init_z[i] = log P(z_{-1}=i), note that z_{-1} is an
auxiliary state whose purpose is to induce a distribution over z_0.)
transition_z_to_z: C X C (transition_z_to_z[i][j] = log P(z_{n+1}=j | z_n=i),
note that the order of z_{n+1} and z_n is different
from `edges`.)
transition_z_to_l: C X K (transition_z_to_l[i][j] = P(l_n=j | z_n=i))
emission_n_l_z: b x N x K x C
Returns:
edges: b x (N-1) x K x C x C, where edges[b, n, k, c2, c1]
= log P(z_n=c2 | z_{n-1}=c1) + log P(l_n=k | z_n=c2)
+ log P(x_{n:n+l_n} | z_n=c2, l_n=k), if n>0
= log P(z_n=c2 | z_{n-1}=c1) + log P(l_n=k | z_n=c2)
+ log P(x_{n:n+l_n} | z_n=c2, l_n=k) + log P(z_{-1}), if n=0
"""
batch, N, K, C = emission_n_l_z.shape
edges = torch.zeros(batch, N, K, C, C).type_as(emission_n_l_z)
# initial state: log P(z_{-1})
if init_z_1.dim() == 1:
init_z_1 = init_z_1.unsqueeze(0).expand(batch, -1)
edges[:, 0, :, :, :] += init_z_1.view(batch, 1, 1, C)
# transitions: log P(z_n | z_{n-1})
edges += transition_z_to_z.transpose(-1, -2).view(1, 1, 1, C, C)
# l given z: log P(l_n | z_n)
edges += transition_z_to_l.transpose(-1, -2).view(1, 1, K, C, 1)
# emissions: log P(x_{n:n+l_n} | z_n, l_n)
edges += emission_n_l_z.view(batch, N, K, C, 1)
return edges