@@ -64,13 +64,11 @@ class Processor {
64
64
std::vector<CoeffData>* output_order);
65
65
bool SelectQuantMatrix (const JPEGData& jpg_in, const bool downsample,
66
66
int best_q[3 ][kDCTBlockSize ],
67
- OutputImage* img,
68
- GuetzliOutput* quantized_out);
67
+ OutputImage* img);
69
68
QuantData TryQuantMatrix (const JPEGData& jpg_in,
70
69
const float target_mul,
71
70
int q[3 ][kDCTBlockSize ],
72
- OutputImage* img,
73
- GuetzliOutput* out);
71
+ OutputImage* img);
74
72
void MaybeOutput (const std::string& encoded_jpg);
75
73
void DownsampleImage (OutputImage* img);
76
74
void OutputJpeg (const JPEGData& in, std::string* out);
@@ -287,8 +285,7 @@ class QuantMatrixGenerator {
287
285
QuantData Processor::TryQuantMatrix (const JPEGData& jpg_in,
288
286
const float target_mul,
289
287
int q[3 ][kDCTBlockSize ],
290
- OutputImage* img,
291
- GuetzliOutput* out) {
288
+ OutputImage* img) {
292
289
QuantData data;
293
290
memcpy (data.q , q, sizeof (data.q ));
294
291
img->CopyFromJpegData (jpg_in);
@@ -311,39 +308,31 @@ QuantData Processor::TryQuantMatrix(const JPEGData& jpg_in,
311
308
comparator_->Compare (*img);
312
309
data.dist_ok = comparator_->DistanceOK (target_mul);
313
310
data.jpg_size = encoded_jpg.size ();
314
- out->jpeg_data = encoded_jpg;
315
- out->distmap = comparator_->distmap ();
316
- out->distmap_aggregate = comparator_->distmap_aggregate ();
317
- out->score = comparator_->ScoreOutputSize (encoded_jpg.size ());
318
311
MaybeOutput (encoded_jpg);
319
312
return data;
320
313
}
321
314
322
315
bool Processor::SelectQuantMatrix (const JPEGData& jpg_in, const bool downsample,
323
316
int best_q[3 ][kDCTBlockSize ],
324
- OutputImage* img,
325
- GuetzliOutput* quantized_out) {
317
+ OutputImage* img) {
326
318
QuantMatrixGenerator qgen (downsample, stats_);
327
319
// Don't try to go up to exactly the target distance when selecting a
328
320
// quantization matrix, since we will need some slack to do the frequency
329
321
// masking later.
330
322
const float target_mul_high = 0 .97f ;
331
323
const float target_mul_low = 0 .95f ;
332
324
333
- QuantData best = TryQuantMatrix (jpg_in, target_mul_high, best_q, img,
334
- quantized_out);
325
+ QuantData best = TryQuantMatrix (jpg_in, target_mul_high, best_q, img);
335
326
for (;;) {
336
327
int q_next[3 ][kDCTBlockSize ];
337
328
if (!qgen.GetNext (q_next)) {
338
329
break ;
339
330
}
340
331
341
- GuetzliOutput out;
342
- QuantData data = TryQuantMatrix (jpg_in, target_mul_high, q_next, img, &out);
332
+ QuantData data = TryQuantMatrix (jpg_in, target_mul_high, q_next, img);
343
333
qgen.Add (data);
344
334
if (CompareQuantData (data, best)) {
345
335
best = data;
346
- *quantized_out = out;
347
336
if (data.dist_ok && !comparator_->DistanceOK (target_mul_low)) {
348
337
break ;
349
338
}
@@ -398,6 +387,7 @@ void Processor::ComputeBlockZeroingOrder(
398
387
return a.second < b.second ; });
399
388
coeff_t processed_block[kBlockSize ];
400
389
memcpy (processed_block, block, sizeof (processed_block));
390
+ comparator_->SwitchBlock (block_x, block_y, factor_x, factor_y);
401
391
while (!input_order.empty ()) {
402
392
float best_err = 1e17f;
403
393
int best_i = 0 ;
@@ -420,7 +410,7 @@ void Processor::ComputeBlockZeroingOrder(
420
410
int block_xx = block_x * factor_x + ix;
421
411
int block_yy = block_y * factor_y + iy;
422
412
if (8 * block_xx < img->width () && 8 * block_yy < img->height ()) {
423
- float err = comparator_->CompareBlock (*img, block_xx, block_yy );
413
+ float err = comparator_->CompareBlock (*img, ix, iy );
424
414
max_err = std::max (max_err, err);
425
415
}
426
416
}
@@ -548,7 +538,14 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
548
538
const int block_height = (height + 8 * factor_y - 1 ) / (8 * factor_y);
549
539
const int num_blocks = block_width * block_height;
550
540
551
- std::vector<std::vector<CoeffData> > orders (num_blocks);
541
+ std::vector<int > candidate_coeff_offsets (num_blocks + 1 );
542
+ std::vector<uint8_t > candidate_coeffs;
543
+ std::vector<float > candidate_coeff_errors;
544
+ candidate_coeffs.reserve (60 * num_blocks);
545
+ candidate_coeff_errors.reserve (60 * num_blocks);
546
+ std::vector<CoeffData> block_order;
547
+ block_order.reserve (3 * kDCTBlockSize );
548
+ comparator_->StartBlockComparisons ();
552
549
for (int block_y = 0 , block_ix = 0 ; block_y < block_height; ++block_y) {
553
550
for (int block_x = 0 ; block_x < block_width; ++block_x, ++block_ix) {
554
551
coeff_t block[kBlockSize ] = { 0 };
@@ -566,11 +563,18 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
566
563
kDCTBlockSize * sizeof (orig_block[0 ]));
567
564
}
568
565
}
566
+ block_order.clear ();
569
567
ComputeBlockZeroingOrder (block, orig_block, block_x, block_y, factor_x,
570
- factor_y, comp_mask, img,
571
- &orders[block_ix]);
568
+ factor_y, comp_mask, img, &block_order);
569
+ candidate_coeff_offsets[block_ix] = candidate_coeffs.size ();
570
+ for (size_t i = 0 ; i < block_order.size (); ++i) {
571
+ candidate_coeffs.push_back (block_order[i].idx );
572
+ candidate_coeff_errors.push_back (block_order[i].block_err );
573
+ }
572
574
}
573
575
}
576
+ comparator_->FinishBlockComparisons ();
577
+ candidate_coeff_offsets[num_blocks] = candidate_coeffs.size ();
574
578
575
579
std::vector<JpegHistogram> ac_histograms (ncomp);
576
580
int jpg_header_size, dc_size;
@@ -619,21 +623,24 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
619
623
for (int block_y = 0 , block_ix = 0 ; block_y < block_height; ++block_y) {
620
624
for (int block_x = 0 ; block_x < block_width; ++block_x, ++block_ix) {
621
625
const int last_index = last_indexes[block_ix];
622
- const std::vector<CoeffData>& order = orders[block_ix];
626
+ const int offset = candidate_coeff_offsets[block_ix];
627
+ const int num_candidates =
628
+ candidate_coeff_offsets[block_ix + 1 ] - offset;
629
+ const float * candidate_errors = &candidate_coeff_errors[offset];
623
630
const float max_err = max_block_error[block_ix];
624
631
if (block_weight[block_ix] == 0 ) {
625
632
continue ;
626
633
}
627
634
if (direction > 0 ) {
628
- for (size_t i = last_index; i < order. size () ; ++i) {
629
- float val = ((order [i]. block_err - max_err) /
635
+ for (size_t i = last_index; i < num_candidates ; ++i) {
636
+ float val = ((candidate_errors [i] - max_err) /
630
637
block_weight[block_ix]);
631
638
global_order.push_back (std::make_pair (block_ix, val));
632
639
}
633
- blocks_to_change += (static_cast < size_t >( last_index) < order. size () ? 1 : 0 );
640
+ blocks_to_change += (last_index < num_candidates ? 1 : 0 );
634
641
} else {
635
642
for (int i = last_index - 1 ; i >= 0 ; --i) {
636
- float val = ((max_err - order [i]. block_err ) /
643
+ float val = ((max_err - candidate_errors [i]) /
637
644
block_weight[block_ix]);
638
645
global_order.push_back (std::make_pair (block_ix, val));
639
646
}
@@ -686,8 +693,9 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
686
693
const int block_x = block_ix % block_width;
687
694
const int block_y = block_ix / block_width;
688
695
const int last_idx = last_indexes[block_ix];
689
- const std::vector<CoeffData>& order = orders[block_ix];
690
- const int idx = order[last_idx + std::min (direction, 0 )].idx ;
696
+ const int offset = candidate_coeff_offsets[block_ix];
697
+ const uint8_t * candidates = &candidate_coeffs[offset];
698
+ const int idx = candidates[last_idx + std::min (direction, 0 )];
691
699
const int c = idx / kDCTBlockSize ;
692
700
const int k = idx % kDCTBlockSize ;
693
701
const int * quant = img->component (c).quant ();
@@ -716,6 +724,8 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
716
724
break ;
717
725
}
718
726
}
727
+ size_t global_order_size = global_order.size ();
728
+ std::vector<std::pair<int , float >>().swap (global_order);
719
729
720
730
for (int i = 0 ; i < num_blocks; ++i) {
721
731
max_block_error[i] += block_weight[i] * val_threshold * direction;
@@ -734,7 +744,7 @@ void Processor::SelectFrequencyMasking(const JPEGData& jpg, OutputImage* img,
734
744
" Blocks[%zd/%d/%d] ValThres[%.4f] Out[%7zd] EstErr[%.2f%%]" ,
735
745
stats_->counters [kNumItersCnt ], img->FrameTypeStr ().c_str (),
736
746
comp_mask, direction > 0 ? " up" : " down" , changed_coeffs,
737
- global_order. size () , changed_blocks.size (),
747
+ global_order_size , changed_blocks.size (),
738
748
blocks_to_change, num_blocks, val_threshold,
739
749
encoded_jpg.size (),
740
750
100.0 - (100.0 * est_jpg_size) / encoded_jpg.size ());
@@ -827,9 +837,7 @@ bool Processor::ProcessJpegData(const Params& params, const JPEGData& jpg_in,
827
837
}
828
838
int best_q[3 ][kDCTBlockSize ];
829
839
memcpy (best_q, q_in, sizeof (best_q));
830
- GuetzliOutput quantized_out;
831
- if (!SelectQuantMatrix (jpg, downsample != 0 , best_q,
832
- &img, &quantized_out)) {
840
+ if (!SelectQuantMatrix (jpg, downsample != 0 , best_q, &img)) {
833
841
for (int c = 0 ; c < 3 ; ++c) {
834
842
for (int i = 0 ; i < kDCTBlockSize ; ++i) {
835
843
best_q[c][i] = 1 ;
@@ -881,7 +889,7 @@ bool Process(const Params& params, ProcessStats* stats,
881
889
std::unique_ptr<ButteraugliComparator> comparator;
882
890
if (jpg.width >= 32 && jpg.height >= 32 ) {
883
891
comparator.reset (
884
- new ButteraugliComparator (jpg.width , jpg.height , rgb,
892
+ new ButteraugliComparator (jpg.width , jpg.height , & rgb,
885
893
params.butteraugli_target , stats));
886
894
}
887
895
bool ok = ProcessJpegData (params, jpg, comparator.get (), &out, stats);
@@ -905,7 +913,7 @@ bool Process(const Params& params, ProcessStats* stats,
905
913
std::unique_ptr<ButteraugliComparator> comparator;
906
914
if (jpg.width >= 32 && jpg.height >= 32 ) {
907
915
comparator.reset (
908
- new ButteraugliComparator (jpg.width , jpg.height , rgb,
916
+ new ButteraugliComparator (jpg.width , jpg.height , & rgb,
909
917
params.butteraugli_target , stats));
910
918
}
911
919
bool ok = ProcessJpegData (params, jpg, comparator.get (), &out, stats);
0 commit comments