-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcontrolled_generation.py
186 lines (162 loc) · 6.07 KB
/
controlled_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# -*- coding: utf-8 -*-
# Copyright 2025 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
import pathlib
media = pathlib.Path(__file__).parents[1] / "third_party"
class UnitTests(absltest.TestCase):
def test_json_controlled_generation(self):
# [START json_controlled_generation]
from google import genai
from google.genai import types
from typing_extensions import TypedDict
class Recipe(TypedDict):
recipe_name: str
ingredients: list[str]
client = genai.Client()
result = client.models.generate_content(
model="gemini-2.0-flash",
contents="List a few popular cookie recipes.",
config=types.GenerateContentConfig(
response_mime_type="application/json", response_schema=list[Recipe]
),
)
print(result)
# [END json_controlled_generation]
def test_json_no_schema(self):
# [START json_no_schema]
from google import genai
client = genai.Client()
prompt = (
"List a few popular cookie recipes in JSON format.\n\n"
"Use this JSON schema:\n\n"
"Recipe = {'recipe_name': str, 'ingredients': list[str]}\n"
"Return: list[Recipe]"
)
result = client.models.generate_content(
model="gemini-2.0-flash", contents=prompt
)
print(result)
# [END json_no_schema]
def test_json_enum(self):
# [START json_enum]
from google import genai
from google.genai import types
import enum
class Choice(enum.Enum):
PERCUSSION = "Percussion"
STRING = "String"
WOODWIND = "Woodwind"
BRASS = "Brass"
KEYBOARD = "Keyboard"
client = genai.Client()
organ = client.files.upload(file=media / "organ.jpg")
result = client.models.generate_content(
model="gemini-2.0-flash",
contents=["What kind of instrument is this:", organ],
config=types.GenerateContentConfig(
response_mime_type="application/json", response_schema=Choice
),
)
print(result) # Expected output: "Keyboard" (or another appropriate enum value)
# [END json_enum]
def test_enum_in_json(self):
# [START enum_in_json]
from google import genai
from google.genai import types
import enum
from typing_extensions import TypedDict
class Grade(enum.Enum):
A_PLUS = "a+"
A = "a"
B = "b"
C = "c"
D = "d"
F = "f"
class Recipe(TypedDict):
recipe_name: str
grade: Grade
client = genai.Client()
result = client.models.generate_content(
model="gemini-2.0-flash",
contents="List about 10 cookie recipes, grade them based on popularity",
config=types.GenerateContentConfig(
response_mime_type="application/json", response_schema=list[Recipe]
),
)
# Expected output: a JSON-parsed list with recipe names and grades (e.g., "a+")
print(result)
# [END enum_in_json]
def test_json_enum_raw(self):
# [START json_enum_raw]
from google import genai
from google.genai import types
client = genai.Client()
organ = client.files.upload(file=media / "organ.jpg")
result = client.models.generate_content(
model="gemini-2.0-flash",
contents=["What kind of instrument is this:", organ],
config=types.GenerateContentConfig(
response_mime_type="application/json",
response_schema={
"type": "STRING",
"enum": ["Percussion", "String", "Woodwind", "Brass", "Keyboard"],
},
),
)
print(result) # Expected output: "Keyboard"
# [END json_enum_raw]
def test_x_enum(self):
# [START x_enum]
from google import genai
from google.genai import types
import enum
class Choice(enum.Enum):
PERCUSSION = "Percussion"
STRING = "String"
WOODWIND = "Woodwind"
BRASS = "Brass"
KEYBOARD = "Keyboard"
client = genai.Client()
organ = client.files.upload(file=media / "organ.jpg")
result = client.models.generate_content(
model="gemini-2.0-flash",
contents=["What kind of instrument is this:", organ],
config=types.GenerateContentConfig(
response_mime_type="text/x.enum", response_schema=Choice
),
)
print(result) # Expected output: "Keyboard"
# [END x_enum]
def test_x_enum_raw(self):
# [START x_enum_raw]
from google import genai
from google.genai import types
client = genai.Client()
organ = client.files.upload(file=media / "organ.jpg")
result = client.models.generate_content(
model="gemini-2.0-flash",
contents=["What kind of instrument is this:", organ],
config=types.GenerateContentConfig(
response_mime_type="text/x.enum",
response_schema={
"type": "STRING",
"enum": ["Percussion", "String", "Woodwind", "Brass", "Keyboard"],
},
),
)
print(result) # Expected output: "Keyboard"
# [END x_enum_raw]
if __name__ == "__main__":
absltest.main()