-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNftool.m
48 lines (39 loc) · 1.24 KB
/
Nftool.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
% Solve an Input-Output Fitting problem with a Neural Network
% Script generated by Neural Fitting app
% Created 18-Mar-2021 20:18:22
%
% This script assumes these variables are defined:
%
% Input - input data.
% Output - target data.
x = Input';
t = Output';
% Choose a Training Function
% For a list of all training functions type: help nntrain
% 'trainlm' is usually fastest.
% 'trainbr' takes longer but may be better for challenging problems.
% 'trainscg' uses less memory. Suitable in low memory situations.
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
% Create a Fitting Network
hiddenLayerSize = str2double(get(handles.edit13,'String'));
net = fitnet(hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
performance = perform(net,t,y)
% View the Network
%view(net)
% Plots
% Uncomment these lines to enable various plots.%figure, plotperform(tr)
%figure, plottrainstate(tr)
%figure, ploterrhist(e)
%figure, plotregression(t,y)
%figure, plotfit(net,x,t)
handles.net=net;
guidata(hObject, handles);