-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathframework_test.sh
executable file
·194 lines (170 loc) · 8.5 KB
/
framework_test.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/bin/bash
./test_install.py
python3 -m torch.utils.collect_env
echo
echo "success"
awk 'BEGIN{
s="/\\/\\/\\/\\/\\"; s=s s s s s s s s;
for (colnum = 0; colnum<77; colnum++) {
r = 255-(colnum*255/76);
g = (colnum*510/76);
b = (colnum*255/76);
if (g>255) g = 510-g;
printf "\033[48;2;%d;%d;%dm", r,g,b;
printf "\033[38;2;%d;%d;%dm", 255-r,255-g,255-b;
printf "%s\033[0m", substr(s,colnum+1,1);
}
printf "\n";
}'
rm -rf pcaps
rm -rf data
DEBUG="debug"
NAME="$DEBUG"
CUDA=$2
VERBOSE="-V"
NOBANNER="--no_banner"
WORKERS="--workers 0"
rev=$(tput rev)
blk=$(tput blink)
bld=$(tput bold)
clr=$(tput sgr0)
if [ -z "$1" ]; then
# download pcaps
mkdir pcaps
wget -O pcaps/vali.pcap https://www.wireshark.org/download/automated/captures/randpkt-2020-09-06-16170.pcap
wget -O pcaps/train.pcap https://www.wireshark.org/download/automated/captures/randpkt-2020-04-02-31746.pcap
wget -O pcaps/fit.pcap https://www.wireshark.org/download/automated/captures/randpkt-2020-03-04-18423.pcap
wget -O pcaps/predict.pcap https://www.wireshark.org/download/automated/captures/randpkt-2020-03-04-18423.pcap
wget -O pcaps/random.pcap https://www.wireshark.org/download/automated/captures/fuzz-2007-12-17-17357.pcap
# convert pcaps
echo -e "$blk================================================================ $clr"
echo "001$rev ${bld}pcap2ds.py -p pcaps/vali.pcap -o data/vali -m byte --chunk 1024 --threads 2 $clr"
echo "$blk================================================================ $clr"
python3 ../pcap2ds.py -p pcaps/vali.pcap -o data/vali -m byte --chunk 1024 --threads 2 --force
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 01 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo "002$rev ${bld}pcap2ds.py -p pcaps/train.pcap -o data/train -m byte --chunk 1024 --threads 2 $clr"
echo "$blk================================================================ $clr"
python3 ../pcap2ds.py -p pcaps/train.pcap -o data/train -m byte --chunk 1024 --threads 2 --force
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 02 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo "003$rev ${bld}pcap2ds.py -p pcaps/fit.pcap -o data/fit -m byte --chunk 1024 --threads 2 $clr"
echo "$blk================================================================ $clr"
python3 ../pcap2ds.py -p pcaps/fit.pcap -o data/fit -m byte --chunk 1024 --threads 2 --force
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 03 exited with error." >&2
exit 0
fi
fi
# *PCAPAE* API warapper
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}training compressor $clr"
echo "004$rev ${bld}main.py -t data/train -v data/vali --verbose --epochs 2 $VERBOSE --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py -t data/train -v data/vali --epochs 2 $VERBOSE --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 04 exited with error." >&2
exit 0
fi
# ## retrain example
# #provide --[m]odel path
# echo -e "\n$blk================================================================ $clr"
# echo -e "${bld}re-training compressor $clr"
# echo "004$rev ${bld}main.py -t data/train -v data/vali --verbose --epochs 2 --retrain --model runs/save_model/$DEBUG/best $CUDA $WORKERS $clr"
# echo "$blk================================================================ $clr"
# python3 ../main.py -t data/train -v data/vali --verbose --epochs 2 --retrain --model runs/save_model/$DEBUG/best $CUDA $WORKERS $NOBANNER
# ret=$?
# if [ $ret -ne 0 ]; then
# echo "Script 04 exited with error." >&2
# exit 0
# fi
## eval
echo -e "\n$blk================================================================ $clr"
echo "006$rev ${bld}pcaps2ds.py -p pcaps/predict.pcap -o data/predict -m byte --chunk 1024 --threads 2 $clr"
echo "$blk================================================================ $clr"
python3 ../pcap2ds.py -p pcaps/predict.pcap -o data/predict -m byte --chunk 1024 --threads 2 --force
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 06 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo "008$rev ${bld}pcaps2ds.py -p pcaps/random.pcap -o data/anomalie -m byte --chunk 1024 --threads 2 --bad $clr"
echo "$blk================================================================ $clr"
python3 ../pcap2ds.py -p pcaps/random.pcap -o data/anomalie -m byte --chunk 1024 --threads 2 --bad --force
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 08 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}reducing fit and predict data $clr"
echo "009$rev ${bld}main.py --model runs/save_model/$DEBUG/best --fit data/fit --predict data/predict --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --model runs/save_model/$DEBUG/best --fit data/fit --predict data/predict --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 09 exited with error." >&2
exit 0
fi
### train AD with reduced data
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}training anomalie detection with reduced data $clr"
echo "010$rev ${bld}main.py --fit runs/redu_data/$DEBUG/data_fit_cpd --model ../ad/blueprints/base_lof.yaml --predict runs/redu_data/$DEBUG/data_predict_cpd --AD --verbose --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --fit runs/redu_data/$DEBUG/data_fit_cpd --model ../ad/blueprints/base_lof.yaml --predict runs/redu_data/$DEBUG/data_predict_cpd --AD --verbose $NOBANNER --name $NAME $WORKERS $CUDA
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 10 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}compressing new data with saved model $clr"
echo "011$rev ${bld}main.py --model runs/save_model/$DEBUG/best --predict anomalie --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --model runs/save_model/$DEBUG/best --predict data/anomalie --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 11 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}predicting AD model with new & compressed data $clr"
echo "012$rev ${bld}main.py --model runs/save_model/$DEBUG/AD/aba7718a_LocalOutlierFactor_model.jlib --predict runs/redu_data/$DEBUG/data_all_anomalie_cpd --verbose --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --model runs/save_model/$DEBUG/AD/aba7718a_LocalOutlierFactor_model.jlib --predict runs/redu_data/$DEBUG/data_anomalie_cpd --verbose --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 12 exited with error." >&2
exit 0
fi
echo -e "\n$blk================================================================ $clr"
echo -e "${bld}baseline: only pcapAE for Anomaly Detection loss based on training data $clr"
echo "013$rev ${bld}main.py --model runs/save_model/$DEBUG/best --predict data/predict --thr 0-0.5 --baseline pcapAE --verbose --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --model runs/save_model/$DEBUG/best --predict data/predict --thr 0-0.5 --baseline pcapAE --verbose --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 13 exited with error." >&2
exit 0
fi
echo -e -"\n$blk================================================================ $clr"
echo -e "${bld}baseline: only pcapAE for Anomaly Detection loss based all anomalie data $clr"
echo "014$rev ${bld}main.py --model runs/save_model/$DEBUG/best --predict data/anomalie --thr 0-0.5 --baseline pcapAE --verbose --name $NAME $WORKERS $CUDA $clr"
echo "$blk================================================================ $clr"
python3 ../main.py --model runs/save_model/$DEBUG/best --predict data/anomalie --thr 0-0.5 --baseline pcapAE --verbose --name $NAME $CUDA $WORKERS $NOBANNER
ret=$?
if [ $ret -ne 0 ]; then
echo "Script 14 exited with error." >&2
exit 0
fi