-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVM.cpp
187 lines (171 loc) · 6.07 KB
/
SVM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include "SVM.h"
int SVC::takeStep(int& i1, int& i2)
{
double L, H;
if (dataloader->Y(i1) == dataloader->Y(i2))
{
L = std::max(0., alpha(i2) + alpha(i1) - C);
H = std::min(C, alpha(i2) + alpha(i1));
}
else{
L = std::max(0., alpha(i2) - alpha(i1));
H = std::min(C, C + alpha(i2) - alpha(i1));
}
if (L == H)
return 0;
Eigen::MatrixXd x1 = dataloader->X(i1, Eigen::all);
Eigen::MatrixXd x2 = dataloader->X(i2, Eigen::all);
double k12 = (this->*kernel_function)(x1, x2)(0);
double k11 = (this->*kernel_function)(x1, x1)(0);
double k22 = (this->*kernel_function)(x2, x2)(0);
double der = k11 + k22 - 2 * k12;
if (der <= 0)
return 0;
double lr = 1;
double alpha_unclipped = alpha(i2) + lr * dataloader->Y(i2) * (E(i1) - E(i2)) / der;
double alpha_new = std::min(std::max(alpha_unclipped, L), H);
double alpha2_delta = alpha_new - alpha(i2);
double alpha1_delta = -alpha2_delta * dataloader->Y(i1) * dataloader->Y(i2);
alpha(i1) += alpha1_delta;
alpha(i2) = alpha_new;
updateSupportVectors(i1);
updateSupportVectors(i2);
// double b1 = E(i1) + dataloader->Y(i1) * alpha1_delta * k11 + dataloader->Y(i2) * alpha2_delta * k12 + b;
// double b2 = E(i2) + dataloader->Y(i1) * alpha1_delta * k12 + dataloader->Y(i2) * alpha2_delta * k22 + b;
// b = (b1 + b2) / 2;
return 1;
}
bool SVC::examineExamples(int examineAll, bool eval_delta_loss)
{
// examineAll = 1;
bool numChanged = 0;
g = predict(dataloader->X, false);
E.array() = g.array() - dataloader->Y.array();
if(eval_delta_loss)
{
double current_loss = E.array().abs().sum();
param.delta_loss = std::abs(current_loss - param.loss);
param.loss = current_loss;
if (param.min_delta_loss > 0 && param.delta_loss < param.min_delta_loss)
return 0;
}
for (int i = 0; i < dataloader->Y.rows(); ++i)
{
double alpha_2 = alpha(i);
if (!examineAll && alpha_2 == 0)
continue;
double r = E(i) * dataloader->Y(i);
if((r < -param.tol && alpha_2 < C) || (r > param.tol && alpha_2 > 0))
{
double max_step_size = 0;
int alpha1_index = -1;
for (int j = 0; j < dataloader->Y.rows(); ++j)
{
if(j == i || E(j) == C || E(j) == 0)
continue;
double step_size = std::abs(E(i) - E(j));
if (step_size > max_step_size)
{
max_step_size = step_size;
alpha1_index = j;
}
}
if(alpha1_index != -1 && takeStep(alpha1_index, i))
return 1;
for (int j = 0; j < dataloader->Y.rows(); ++j)
{
if(j == i || E(j) == C || E(j) == 0)
continue;
if(takeStep(j, i))
return 1;
}
for (int j = 0; j < dataloader->Y.rows(); ++j)
{
if(j == i)
continue;
if(takeStep(j, i))
return 1;
}
}
}
return 0;
}
void SVC::SMO()
{
bool examineAll = true;
bool numChanged = false;
bool eval_delta_loss = false;
param.current_iteration = 0;
while( true)
{
++param.current_iteration;
if(param.loss_eval_circle > 0 && param.current_iteration % param.loss_eval_circle == 0)
eval_delta_loss = true;
numChanged = examineExamples(examineAll, eval_delta_loss);
if (examineAll)
examineAll = 0;
else if(numChanged == 0)
examineAll = 1;
if(eval_delta_loss)
{
eval_delta_loss = false;
postProcess(g);
param.training_acc = classify_accuracy(g, dataloader->Y);
param.max_acc = param.training_acc > param.max_acc ? param.training_acc: param.max_acc;
printVerbose();
}
if(param.max_iterations > 0 && param.current_iteration >= param.max_iterations)
break;
if(param.min_delta_loss > 0 && param.min_delta_loss > param.delta_loss)
break;
dataloader->loadData();
vector_mask = dataloader->shuffer * vector_mask;
alpha = dataloader->shuffer * alpha;
}
}
void SVC::train()
{
std::cout << "start training..." << std::endl;
alpha = Eigen::MatrixXd::Constant(dataloader->X.rows(), 1, 0);
vector_mask = Eigen::VectorXi(Eigen::VectorXi::Zero(dataloader->X.rows()));
SMO();
}
Eigen::MatrixXd SVC::predict(const Eigen::MatrixXd &input, bool post_process)
{
Eigen::MatrixXd result;
support_vector_indices.clear();
for(int i = 0; i < vector_mask.size(); ++i)
{
if (vector_mask(i) != 0)
support_vector_indices.push_back(i);
}
if (support_vector_indices.empty())
result = Eigen::MatrixXd::Constant(dataloader->X.rows(), 1, K(0, 0));
else
{
Eigen::MatrixXd sv = (dataloader->X)(support_vector_indices, Eigen::all).matrix();
Eigen::MatrixXd a = (alpha)(support_vector_indices, Eigen::all);
Eigen::MatrixXd y = (dataloader->Y)(support_vector_indices, Eigen::all);
result = ((this->*kernel_function)(dataloader->X, sv)) * (a.array() * y.array()).matrix();
}
// result = ((this->*kernel_function)(dataloader->X, dataloader->X)) * (alpha.array() * dataloader->Y.array()).matrix();
// result.array() -= b;
if (post_process)
postProcess(result);
return result;
}
void SVC::postProcess(Eigen::MatrixXd &predict)
{
predict = (predict.array() > 0).select(Eigen::MatrixXd::Ones(predict.rows(), predict.cols()), Eigen::MatrixXd::Constant(predict.rows(), predict.cols(), -1));
}
void testSVC(shared_ptr<DataLoader> dataloader)
{
unique_ptr<SVM> svc(new SVC(dataloader));
svc->setParam("loss_eval_circle", 5);
svc->setParam("max_iterations", 200);
svc->setParam("min_delta_loss", -1);
svc->setParam("kernel_type", SVM::Gaussian);
svc->setParam("tol", 0.01);
svc->setParam("poly_n", 5);
svc->train();
}