|
| 1 | +""" An implementation of the Edmonds-Karp algorithm to find maximum flow. """ |
| 2 | +__author__ = 'Claus Martinsen' |
| 3 | + |
| 4 | +from math import inf |
| 5 | +from collections import deque |
| 6 | + |
| 7 | + |
| 8 | +def edmonds_karp(capacity_matrix, s, t): |
| 9 | + """ |
| 10 | + Finds the maximum flow (i.e. the maximum throughput) from node a to node b |
| 11 | + given a matrix of the capacity between the nodes. |
| 12 | +
|
| 13 | + The Edmonds-Karp algorithm is an implementation of the Ford-Fulkerson |
| 14 | + method. |
| 15 | +
|
| 16 | + :param capacity_matrix: An n*n matrix where m[i][j] indicates the capacity |
| 17 | + from node i to node j and n is the total number of nodes in the graph. |
| 18 | + :type capacity_matrix: list |
| 19 | + :param s: The source/start node. |
| 20 | + :type s: int |
| 21 | + :param t: The drain/end node. |
| 22 | + :type t: int |
| 23 | + :return: An n*n matrix of maximum flow where m[i][j] indicates the flow |
| 24 | + from node i to node j. |
| 25 | + :rtype: list |
| 26 | + """ |
| 27 | + n = len(capacity_matrix) |
| 28 | + queue = deque() |
| 29 | + flow_net = [[0 for _ in range(n)] for _ in range(n)] |
| 30 | + residual_net = [[capacity_matrix[y][x] for x in range(n)] for y in range(n)] |
| 31 | + augmenting_values = [0 if x != t else -1 for x in range(n)] |
| 32 | + |
| 33 | + while augmenting_values[t] != 0: # While we find an augmenting path |
| 34 | + # Reset the values |
| 35 | + predecesor_values = [None for _ in range(n)] |
| 36 | + augmenting_values = [0 for _ in range(n)] |
| 37 | + augmenting_values[s] = inf |
| 38 | + queue.clear() |
| 39 | + queue.appendleft(s) |
| 40 | + |
| 41 | + while augmenting_values[t] == 0 and queue: |
| 42 | + # While we have not augmented the drain, or run out of nodes |
| 43 | + u = queue.pop() |
| 44 | + for v in range(n): # Try to push more flow |
| 45 | + if u != v and capacity_matrix[u][v] != 0 or capacity_matrix[v][u] != 0: |
| 46 | + if capacity_matrix[u][v] != 0: |
| 47 | + residual_net[u][v] = capacity_matrix[u][v] - flow_net[u][v] |
| 48 | + else: |
| 49 | + residual_net[u][v] = flow_net[v][u] |
| 50 | + if residual_net[u][v] > 0 and augmenting_values[v] == 0: |
| 51 | + if augmenting_values[u] < residual_net[u][v]: |
| 52 | + augmenting_values[v] = augmenting_values[u] |
| 53 | + else: |
| 54 | + augmenting_values[v] = residual_net[u][v] |
| 55 | + predecesor_values[v] = u |
| 56 | + queue.appendleft(v) |
| 57 | + |
| 58 | + u, v = predecesor_values[t], t |
| 59 | + while u is not None: # Update the flow in the augmenting path |
| 60 | + if capacity_matrix[u][v] != 0: |
| 61 | + flow_net[u][v] = flow_net[u][v] + augmenting_values[t] |
| 62 | + else: |
| 63 | + flow_net[v][u] = flow_net[v][u] - augmenting_values[t] |
| 64 | + u, v = predecesor_values[u], u |
| 65 | + |
| 66 | + return flow_net |
| 67 | + |
| 68 | + |
| 69 | +def get_node_flow(flow_net, node): |
| 70 | + """ |
| 71 | + Returns the sum of the flow into minus the sum of the flow out from the |
| 72 | + node. |
| 73 | +
|
| 74 | + In a maximum flow network, this function returns 0 for all nodes except |
| 75 | + for the source (wich returns -max_flow) and drain (wich returns max_flow). |
| 76 | + """ |
| 77 | + flow = 0 |
| 78 | + n = len(flow_net) |
| 79 | + for i in range(n): |
| 80 | + flow += flow_net[i][node] |
| 81 | + flow -= flow_net[node][i] |
| 82 | + return flow |
| 83 | + |
| 84 | + |
| 85 | +if __name__ == '__main__': |
| 86 | + # Only executed when this module is run directly |
| 87 | + # The following is an example of how to use the algorithm |
| 88 | + |
| 89 | + a = [[0, 13, 13, 0, 0, 0], |
| 90 | + [0, 0, 0, 14, 0, 0], |
| 91 | + [0, 4, 0, 9, 12, 0], |
| 92 | + [0, 0, 0, 0, 0, 4], |
| 93 | + [0, 0, 0, 7, 0, 20], |
| 94 | + [0, 0, 0, 0, 0, 0]] |
| 95 | + |
| 96 | + source_node, drain_node = 0, 5 |
| 97 | + flow_network = edmonds_karp(a, source_node, drain_node) |
| 98 | + |
| 99 | + for row in flow_network: |
| 100 | + print(row) |
| 101 | + |
| 102 | + print('Maximum flow:', get_node_flow(flow_network, drain_node)) |
0 commit comments