-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathcnn.py
83 lines (70 loc) · 3.15 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
class IDCNN(nn.Module):
"""
(idcnns): ModuleList(
(0): Sequential(
(layer0): Conv1d(10, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer1): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer2): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
)
(1): Sequential(
(layer0): Conv1d(10, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer1): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer2): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
)
(2): Sequential(
(layer0): Conv1d(10, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer1): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer2): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
)
(3): Sequential(
(layer0): Conv1d(10, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer1): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(1,))
(layer2): Conv1d(1, 1, kernel_size=(3,), stride=(1,), padding=(2,), dilation=(2,))
)
)
)
"""
def __init__(self, input_size, filters, kernel_size=3, num_block=4):
super(IDCNN, self).__init__()
self.layers = [
{"dilation": 1},
{"dilation": 1},
{"dilation": 2}]
net = nn.Sequential()
norms_1 = nn.ModuleList([LayerNorm(256) for _ in range(len(self.layers))])
norms_2 = nn.ModuleList([LayerNorm(256) for _ in range(num_block)])
for i in range(len(self.layers)):
dilation = self.layers[i]["dilation"]
single_block = nn.Conv1d(in_channels=filters,
out_channels=filters,
kernel_size=kernel_size,
dilation=dilation,
padding=kernel_size // 2 + dilation - 1)
net.add_module("layer%d"%i, single_block)
net.add_module("relu", nn.ReLU())
net.add_module("layernorm", norms_1[i])
self.linear = nn.Linear(input_size, filters)
self.idcnn = nn.Sequential()
for i in range(num_block):
self.idcnn.add_module("block%i" % i, net)
self.idcnn.add_module("relu", nn.ReLU())
self.idcnn.add_module("layernorm", norms_2[i])
def forward(self, embeddings, length):
embeddings = self.linear(embeddings)
embeddings = embeddings.permute(0, 2, 1)
output = self.idcnn(embeddings).permute(0, 2, 1)
return output
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x-mean) / (std + self.eps) + self.b_2