1
+ """
2
+ 2890. Reshape Data: Melt
3
+ Solved
4
+ Easy
5
+ Companies
6
+ Hint
7
+ DataFrame report
8
+ +-------------+--------+
9
+ | Column Name | Type |
10
+ +-------------+--------+
11
+ | product | object |
12
+ | quarter_1 | int |
13
+ | quarter_2 | int |
14
+ | quarter_3 | int |
15
+ | quarter_4 | int |
16
+ +-------------+--------+
17
+ Write a solution to reshape the data so that each row represents sales data for a product in a specific quarter.
18
+
19
+ The result format is in the following example.
20
+
21
+ Example 1:
22
+
23
+ Input:
24
+ +-------------+-----------+-----------+-----------+-----------+
25
+ | product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |
26
+ +-------------+-----------+-----------+-----------+-----------+
27
+ | Umbrella | 417 | 224 | 379 | 611 |
28
+ | SleepingBag | 800 | 936 | 93 | 875 |
29
+ +-------------+-----------+-----------+-----------+-----------+
30
+ Output:
31
+ +-------------+-----------+-------+
32
+ | product | quarter | sales |
33
+ +-------------+-----------+-------+
34
+ | Umbrella | quarter_1 | 417 |
35
+ | SleepingBag | quarter_1 | 800 |
36
+ | Umbrella | quarter_2 | 224 |
37
+ | SleepingBag | quarter_2 | 936 |
38
+ | Umbrella | quarter_3 | 379 |
39
+ | SleepingBag | quarter_3 | 93 |
40
+ | Umbrella | quarter_4 | 611 |
41
+ | SleepingBag | quarter_4 | 875 |
42
+ +-------------+-----------+-------+
43
+ Explanation:
44
+ The DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter."
45
+ """
46
+
47
+ import pandas as pd
48
+
49
+ def meltTable (report : pd .DataFrame ) -> pd .DataFrame :
50
+ return report .melt (id_vars = 'product' , var_name = 'quarter' , value_name = 'sales' )
0 commit comments