-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_dataset.py
726 lines (664 loc) · 27.7 KB
/
test_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
#!/usr/bin/env python3
import sys
import os
import shutil
import json,csv
from pathlib import Path
from py_dataset import dataset
# Set this to false to aggregate test results, True
# will stop test on first failure.
fail_fast = True
def reset_collection(c_name):
keys = dataset.keys(c_name)
for key in keys:
dataset.delete(c_name, key)
#
# test_basic(c_name) runs tests on basic CRUD ops
#
def test_basic(t, c_name):
'''test_basic(c_name) runs tests on basic CRUD ops'''
# Setup a test record
key = "2488"
# NOTE: the JSON stored should have a key/id field if you need that,
# as of dataset v2 this is no longer injected.
value = { "key": key, "title": "Twenty Thousand Leagues Under the Seas: An Underwater Tour of the World", "formats": ["epub","kindle","plain text"], "authors": [{ "given": "Jules", "family": "Verne" }], "url": "https://www.gutenberg.org/ebooks/2488"}
# We should have an empty collection, we will create our test record.
if dataset.create(c_name, key, value) == False:
err = dataset.error_message()
t.error(f'create({c_name}, {key}, {value}) failed, {err}')
return
# Check to see that we have only one record
key_count = dataset.count(c_name)
if key_count != 1:
t.error(f"Failed, expected count to be 1, got {key_count}")
# Do a minimal test to see if the record looks like it has content
keyList = dataset.keys(c_name)
rec, err = dataset.read(c_name, key)
if err != "":
t.error(f"Unexpected error for {key} in {c_name}, {err}")
for k, v in value.items():
if not isinstance(v, list):
if k in rec and rec[k] == v:
t.print("OK, found", k, " -> ", v)
else:
t.error(f"epxected {rec[k]} got {v}")
else:
if k == "formats" or k == "authors":
t.print("OK, expected lists for", k, " -> ", v)
else:
t.error(f"Failed, expected {k} with list v, got {v}")
# Test updating record
value["verified"] = True
if dataset.update(c_name, key, value) == False:
err = dataset.error_message()
t.error(f"update({c_name}, {key}, {value}) failed, {err}")
rec, err = dataset.read(c_name, key)
if err != "":
t.error(f"Unexpected error for {key} in {c_name}, {err}")
for k, v in value.items():
if not isinstance(v, list):
if k in rec and rec[k] == v:
t.print("OK, found", k, " -> ", v)
else:
t.error("expected {rec[k]} got {v} for key {k}")
else:
if k == "formats" or k == "authors":
t.print("OK, expected lists for", k, " -> ", v)
else:
t.error("Failed, expected {k} with a list for v, got {v}")
# Test path to record (this is deprecated, remove test. RSD 2025-04-16)
# cwd = f"{Path('.').resolve()}"
# expected_s = "/".join([cwd, c_name, "pairtree", "24", "88", (key+".json")])
# expected_l = len(expected_s)
# p = dataset.path(c_name, key)
# if len(p) != expected_l:
# t.error("Failed, expected string length", expected_l, "got", len(p))
# if p != expected_s:
# t.error("Failed, expected", expected_s, "got", p)
# Test listing records
l = dataset.list(c_name, [key])
if len(l) != 1:
t.error(f"list({c_name}, [{key}]) failed, list should return an array of one record, got list", l)
return
# test deleting a record
if dataset.delete(c_name, key) == False:
err = dataset.error_message()
t.error("Failed, could not delete record", key, ", ", err)
#
# test_keys(t, c_name) test getting, filter and sorting keys
#
def test_keys(t, c_name):
'''test_keys(c_name) test getting, filter and sorting keys'''
reset_collection(c_name)
# Test count after delete
key_list = dataset.keys(c_name)
cnt = dataset.count(c_name)
if cnt != 0:
t.error("Failed, expected zero records, got", cnt, key_list)
#
# Generate multiple records for collection for testing keys
#
test_records = {
"gutenberg:21489": {"title": "The Secret of the Island", "formats": ["epub","kindle", "plain text", "html"], "authors": [{"given": "Jules", "family": "Verne"}], "url": "http://www.gutenberg.org/ebooks/21489", "categories": "fiction, novel"},
"gutenberg:2488": { "title": "Twenty Thousand Leagues Under the Seas: An Underwater Tour of the World", "formats": ["epub","kindle","plain text"], "authors": [{ "given": "Jules", "family": "Verne" }], "url": "https://www.gutenberg.org/ebooks/2488", "categories": "fiction, novel"},
"gutenberg:21839": { "title": "Sense and Sensibility", "formats": ["epub", "kindle", "plain text"], "authors": [{"given": "Jane", "family": "Austin"}], "url": "http://www.gutenberg.org/ebooks/21839", "categories": "fiction, novel" },
"gutenberg:3186": {"title": "The Mysterious Stranger, and Other Stories", "formats": ["epub","kindle", "plain text", "html"], "authors": [{ "given": "Mark", "family": "Twain"}], "url": "http://www.gutenberg.org/ebooks/3186", "categories": "fiction, short story"},
"hathi:uc1321060001561131": { "title": "A year of American travel - Narrative of personal experience", "formats": ["pdf"], "authors": [{"given": "Jessie Benton", "family": "Fremont"}], "url": "https://babel.hathitrust.org/cgi/pt?id=uc1.32106000561131;view=1up;seq=9", "categories": "non-fiction, memoir" }
}
test_count = len(test_records)
for k in test_records:
v = test_records[k]
# NOTE: in dataset v2 key's are NOT injected into object,
# so we need to inject a key/id ourselves.
v['key'] = k
if dataset.create(c_name, k, v) == False:
err = dataset.error_message()
t.error("Failed, could not add", k, "to", c_name, ', ', err)
# Test keys
all_keys = dataset.keys(c_name)
if len(all_keys) != test_count:
t.error("Expected", test_count,"all_keys back, got", all_keys)
# test_issue12() https://github.com/caltechlibrary/py_dataset/issues/12
# delete_frame() returns True but frame metadata still in memory.
#
def test_issue12(t, c_name):
src = '''[
{"id": "1", "c1": 1, "c2": 2, "c3": 3 },
{"id": "2", "c1": 2, "c2": 2, "c3": 3 },
{"id": "3", "c1": 3, "c2": 3, "c3": 3 },
{"id": "4", "c1": 1, "c2": 1, "c3": 1 },
{"id": "5", "c1": 6, "c2": 6, "c3": 6 }
]'''
if dataset.status(c_name) == False:
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error(f'failed to create {c_name}')
return
objects = json.loads(src)
for obj in objects:
key = obj['id']
if dataset.has_key(c_name, key):
dataset.update(c_name, key, obj)
else:
dataset.create(c_name, key, obj)
f_names = dataset.frame_names(c_name)
for f_name in f_names:
ok = dataset.delete_frame(c_name, f_name)
if ok == False:
err = dataset.error_message()
t.error(f'Failed to delete {f_name} from {c_name} -> "{err}"')
return
if dataset.has_frame(c_name, f_name) == True:
t.error(f'Failed to delete frame {c_name} from {c_name}, frame still exists')
return
f_name = 'issue12'
dot_paths = [ ".c1", "c3" ]
labels = [ ".col1", ".col3" ]
keys = dataset.keys(c_name)
if not dataset.frame_create(c_name, f_name, keys, dot_paths, labels):
err = dataset.error_message()
t.error(f'failed to create {f_name} from {c_name}, {err}')
if not dataset.has_frame(c_name, f_name):
err = dataset.error_message()
t.error(f'expected frame {f_name} to exists, {err}')
return
f_keys = dataset.frame_keys(c_name, f_name)
if len(f_keys) == 0:
err = dataset.error_message()
t.error(f'expected keys in {f_name}, got zero, {err}')
return
f_objects = dataset.frame_objects(c_name, f_name)
if len(f_objects) == 0:
err = dataset.error_message()
t.error(f'expected objects in {f_name}, got zero, {err}')
return
if not dataset.delete_frame(c_name, f_name):
err = dataset.error_message()
t.error(f'expected to delete {f_name} in {c_name}, {err}')
#
# test_issue32() make sure issue 32 stays fixed.
#
def test_issue32(t, c_name):
if dataset.create(c_name, "k1", {"id": "k1", "one":1}) == False:
err = dataset.error_message()
t.error("Failed to create k1 in", c_name, ', ', err)
return
if dataset.has_key(c_name, "k1") == False:
t.error("Failed, has_key k1 should return", True)
if dataset.has_key(c_name, "k2") == True:
t.error("Failed, has_key k2 should return", False)
# Setup our test collection, recreate it if necessary
def test_setup(t, c_name):
if os.path.exists(c_name):
shutil.rmtree(c_name)
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error("init({c_name}, '') failed, {err}")
return
if not os.path.exists(c_name):
t.error('Failed to create directory for collection, init failed silently.')
if not os.path.exists(os.path.join(c_name, 'collection.json')):
t.error('Failed to create collection.json, init failed silently.')
return
def test_check_repair(t, c_name):
t.print("Testing status on", c_name)
# Make sure we have a left over collection to check and repair
if os.path.exists(c_name) == True:
shutil.rmtree(c_name)
if dataset.status(c_name) == True:
dataset.close(c_name)
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error(f'init({c_name}, "") failed, {err}')
return
if dataset.status(c_name) == False:
t.error(f"Failed, expected dataset.status() == True, got False for {c_name}")
return
if dataset.has_key(c_name, 'one') == False:
if dataset.create(c_name, 'one', {'id': 'one', "one": 1}) == False:
err = dataset.error_message()
t.error(f'create({c_name}, "one", {"id": "one", "one": 1}) failed, {err}')
t.print(f"Testing check on {c_name}")
# Check our collection
if not (dataset.check(c_name) == True):
err = dataset.error_message()
t.error("Failed, (before break) expected check True, got False for {c_name} (err: {err})")
return
# Break and recheck our collection
print(f"Removing {c_name}/collection.json to cause a fail")
if os.path.exists(c_name + "/collection.json"):
os.remove(c_name + "/collection.json")
print(f"Testing check on (broken) {c_name}")
if not (dataset.check(c_name) == False):
err = dataset.error_message()
t.error(f"Failed, (after break) expected check False got True for {c_name} (err: {err})")
else:
t.print(f"Should have see error output for broken {c_name}")
# Repair our collection
t.print("Testing repair on", c_name)
if dataset.repair(c_name) == False:
err = dataset.error_message()
t.error("Failed, expected repair to return True, got, ", err)
if os.path.exists(os.path.join(c_name, "collection.json")) == False:
t.error(f"Failed, expected recreated {c_name}/collection.json")
def test_attachments(t, c_name):
t.print("Testing attach, attachments, detach and prune")
# Generate two files to attach.
filenames = ['a1.txt', 'a2.txt']
for i, f_name in enumerate(filenames):
with open(f_name, 'w') as text_file:
text_file.write(f'This is file {f_name} ({i})' + "\n")
if dataset.status(c_name) == False:
t.error("Failed,", c_name, "missing")
return
keys = dataset.keys(c_name)
if len(keys) < 1:
t.error("Failed,", c_name, "should have keys")
return
key = keys[0]
if dataset.attach(c_name, key, filenames) == False:
err = dataset.error_message()
t.error(f"Failed to attach files for {c_name} -> {key} => {filenames} : {err}")
return
l = dataset.attachments(c_name, key)
if len(l) != 2:
t.error(f"Failed, expected two attachments for {c_name} -> {key} got ({len(l)}) {l}")
return
#Check that attachments should not be impacted by update
if dataset.update(c_name, key, {"key": key, "testing":"update"}) == False:
err = dataset.error_message()
t.error("Failed, to update record", c_name, key, err)
return
l = dataset.attachments(c_name, key)
if len(l) != 2:
t.error("Failed, expected two attachments after update for", c_name, key, "got", l)
return
if os.path.exists(filenames[0]):
os.remove(filenames[0])
if os.path.exists(filenames[1]):
os.remove(filenames[1])
# First try detaching one file.
if not dataset.detach(c_name, key, filenames[1]):
err = dataset.error_message()
t.error(f"Failed, expected True for detching {c_name}.{key} -> {filenames[1]}, {err}")
if os.path.exists(filenames[1]):
os.remove(filenames[1])
else:
t.error("Failed to detch", filenames[1], "from", c_name, key)
if not dataset.detach(c_name, key, filenames):
err = dataset.error_message()
t.error("Failed, expected True for", c_name, key, filenames, ', ', err)
for fname in filenames:
if os.path.exists(fname):
os.remove(fname)
else:
t.error("Failed, expected", fname, "to be detached from", c_name, key)
# Test detaching all files
if dataset.detach(c_name, key, []) == False:
err = dataset.error_message()
t.error("Failed, expected True for (detaching all)", c_name, key, ', ', err)
for fname in filenames:
if os.path.exists(fname):
os.remove(fname)
else:
t.error("Failed, expected", fname, "for detaching all from", c_name, key)
if not dataset.prune(c_name, key, [filenames[0]]):
err = dataset.error_messag()
t.error("Failed, expected True for prune", c_name, key, [filenames[0]], ', ', err)
l = dataset.attachments(c_name, key)
if len(l) != 1:
t.error("Failed, expected one file after prune for", c_name, key, [filenames[0]], "got", l)
if not dataset.prune(c_name, key, []):
err = dataset.error_message()
t.error("Failed, expected True for prune (all)", c_name, key, ', ', err)
l = dataset.attachments(c_name, key)
if len(l) != 0:
t.error("Failed, expected zero files after prune for", c_name, key, "got", l)
def test_join(t, c_name):
key = "test_join1"
obj1 = { "id": key, "one": 1}
obj2 = { "id": key, "two": 2}
if dataset.status(c_name) == False:
t.error("Failed, collection status is False,", c_name)
return
ok = dataset.has_key(c_name, key)
err = ''
if ok == True:
ok = dataset.update(collection_nane, key, obj1)
else:
ok = dataset.create(c_name, key, obj1)
if ok == False:
err = dataset.error_message()
t.error(f'Failed, could not add record for test ({c_name}, {key}, {obj1}), {err}')
return
if not dataset.join(c_name, key, obj2, overwrite = False):
err = dataset.error_message()
t.error(f'Failed, join for {c_name}, {key}, {obj2}, overwrite = False -> {err}')
obj_result, err = dataset.read(c_name, key)
if err != '':
t.error(f'Unexpected error for {key} in {c_name}, {err}')
if obj_result.get('one') != 1:
t.error(f'Failed to join append key {key}, {obj_result}')
if obj_result.get("two") != 2:
t.error(f'Failed to join append key {key}, {obj_result}')
obj2['one'] = 3
obj2['two'] = 3
obj2['three'] = 3
if not dataset.join(c_name, key, obj2, overwrite = True):
err = dataset.error_message()
t.error(f'Failed to join overwrite {c_name}, {key}, {obj2}, overwrite = True -> {err}')
obj_result, err = dataset.read(c_name, key)
if err != '':
t.error(f'Unexpected error for {key} in {c_name}, {err}')
for k in obj_result:
if k != 'id' and obj_result[k] != 3:
t.error('Failed to update value in join overwrite', k, obj_result)
#
# test_issue43() When exporting records to a table using
# use_srict_dotpath(True), the rows are getting miss aligned.
#
def test_issue43(t, c_name, csv_name):
if os.path.exists(c_name):
shutil.rmtree(c_name)
if os.path.exists(csv_name):
os.remove(csv_name)
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error(f'Failed, need a {c_name} to run test, {err}')
return
table = {
"r1": {
"c1": "one",
"c2": "two",
"c3": "three",
"c4": "four"
},
"r2": {
"c1": "one",
"c3": "three",
"c4": "four"
},
"r3": {
"c1": "one",
"c2": "two",
"c4": "four"
},
"r4": {
"c1": "one",
"c2": "two",
"c3": "three"
},
"r5": {
"c1": "one",
"c2": "two",
"c3": "three",
"c4": "four"
}
}
for key in table:
row = table[key]
row['key'] = key # Save the key/id along with the row data
if dataset.create(c_name, key, row) == False:
err = dataset.error_message()
t.error(f"Can't add test row {key} to {c_name}, {err}")
return
dataset.use_strict_dotpath(False)
# Setup frame
dataset.error_clear()
frame_name = 'f1'
keys = dataset.keys(c_name)
if not dataset.frame_create(c_name, frame_name, keys,
[".key",".c1",".c2",".c3",".c4"], ["key", "c1", "c2", "c3", "c4"]):
err = dataset.error_message()
t.error(f'failed, dataset frame {c_name} {frame_name} ..., {err}')
return
#
# frame export and import via csv is deprecaited and not longer supported. RSD 2025-04-16
#
# print(f'DEBUG exporting frame as csv {csv_name}')
# if not dataset.export_csv(c_name, frame_name, csv_name):
# err = dataset.error_message()
# t.error(f'export_csv({c_name}, {frame_name}, {csv_name} should have emitted warnings, not error, {err}')
# return
# print(f'DEBUG make sure {csv_name} is a valid csv file')
# with open(csv_name, mode = 'r', encoding = 'utf-8') as f:
# rows = f.read()
# for row in rows.split('\n'):
# if len(row) > 0:
# cells = row.split(',')
# if len(cells) < 5:
# t.error(f'row error {csv_name} for {cells}')
def test_clone_sample(t, c_name, sample_size, training_name, training_dsn, test_name, test_dsn):
if os.path.exists(training_name):
shutil.rmtree(training_name)
if os.path.exists(test_name):
shutil.rmtree(test_name)
if not dataset.clone_sample(c_name, training_name, training_dsn, test_name, test_dsn, sample_size):
err = dataset.error_message()
t.error(f"can't clone sample {c_name} (size {sample_size}) into {training_name} and {test_name}. {err}")
def test_frame(t, c_name):
if os.path.exists(c_name):
shutil.rmtree(c_name)
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error(err)
return
data = [
{ "id": "A", "one": "one", "two": 22, "three": 3.0, "four": ["one", "two", "three"] },
{ "id": "B", "two": 2000, "three": 3000.1 },
{ "id": "C" },
{ "id": "D", "one": "ONE", "two": 20, "three": 334.1, "four": [] }
]
keys = []
dot_paths = [".id", ".one", ".two", ".three", ".four"]
labels = ["id", "one", "two", "three", "four"]
for row in data:
key = row['id']
keys.append(key)
dataset.create(c_name, key, row)
f_name = 'f1'
if not dataset.frame_create(c_name, f_name, keys, dot_paths, labels):
err = dataset.error_message()
t.error(f'''failed to create {c_name} frame {f_name}, {err}''')
if not dataset.frame_reframe(c_name, f_name):
err = dataset.error_message()
t.error(f'''failed to reframe {c_name} frame {f_name}, {err}''')
l = dataset.frame_names(c_name)
if len(l) != 1 or l[0] != 'f1':
t.error(f"expected one frame name, f1, got {l}")
if dataset.delete_frame(c_name, f_name) == False:
err = dataset.error_message()
t.error(f'failed to delete_frame({c_name}, {f_name}), {err}')
def test_frame_objects(t, c_name):
if dataset.status(c_name) == True:
dataset.close(c_name)
if os.path.exists(c_name):
shutil.rmtree(c_name)
if dataset.init(c_name, "") == False:
err = dataset.error_message()
t.error(f'init({c_name}), {err}')
return
data = [
{ "id": "A", "nameIdentifiers": [
{
"nameIdentifier": "0000-000X-XXXX-XXXX",
"nameIdentifierScheme": "ORCID",
"schemeURI": "http://orcid.org/"
},
{
"nameIdentifier": "H-XXXX-XXXX",
"nameIdentifierScheme": "ResearcherID",
"schemeURI": "http://www.researcherid.com/rid/"
}], "two": 22, "three": 3.0, "four": ["one", "two", "three"] },
{ "id": "B", "two": 2000, "three": 3000.1 },
{ "id": "C" },
{ "id": "D", "nameIdentifiers": [
{
"nameIdentifier": "0000-000X-XXXX-XXXX",
"nameIdentifierScheme": "ORCID",
"schemeURI": "http://orcid.org/"
}], "two": 20, "three": 334.1, "four": [] }
]
keys = []
dot_paths = [".id",".nameIdentifiers",".nameIdentifiers[:].nameIdentifier",".two", ".three", ".four"]
labels = ["id","nameIdentifiers", "nameIdentifier", "two", "three", "four"]
for row in data:
key = row['id']
keys.append(key)
err = dataset.create(c_name, key, row)
f_name = 'f1'
if dataset.frame_create(c_name, f_name, keys, dot_paths, labels) == False:
err = dataset.error_message()
t.error(f'frame_create({c_name}, {f_name}, {keys}, {dot_paths}, {labels}), {err}')
return
f_keys = dataset.frame_keys(c_name, f_name)
if len(f_keys) != len(keys):
t.error(f'expected {len(keys)}, got {len(f_keys)}')
if dataset.frame_refresh(c_name, f_name) == False:
err = dataset.error_message()
t.error(f'frame_reframe({c_name}, {f_name}), {err}')
l = dataset.frame_names(c_name)
if len(l) != 1 or l[0] != 'f1':
t.error(f"expected one frame name, f1, got {l}")
object_result = dataset.frame_objects(c_name, f_name)
if len(object_result) != 4:
t.error(f'Did not get correct number of objects back, expected 4 got {len(object_result)}, {object_result}')
count_nameId = 0
count_nameIdObj = 0
for obj in object_result:
if 'id' not in obj:
t.error(f'{c_name} frame {f_name}, did not get an "id" attribure in object -> {obj}')
#print(f'DEBUG frame-objects {c_name} {f_name} obj -> {json.dumps(obj,sort_keys=True, indent=2)}')
if 'nameIdentifiers' in obj:
count_nameId += 1
for idv in obj['nameIdentifiers']:
if 'nameIdentifier' not in idv:
t.error(f'Missing part of object, {obj}')
if 'nameIdentifier' in obj:
count_nameIdObj += 1
if "0000-000X-XXXX-XXXX" not in obj['nameIdentifier']:
t.error(f'Missing object in complex dot path {obj}')
if count_nameId != 2:
t.error(f"c_name {c_name} frame {f_name}, Incorrect number of nameIdentifiers elements, expected 2, got {count_nameId}")
return
if count_nameIdObj != 2:
t.error(f"Incorrect number of nameIdentifier elements, expected 2, got {count_nameIdObj}")
return
if dataset.delete_frame(c_name, f_name) == False:
err = dataset.error_message()
t.error(f'delete_frame({c_name}, {f_name}), {err}')
def test_query(t, c_name):
# Setup our collection to have some objects.
objects = [
{"one": 1},
{"two": 2},
{"three": 3}
]
for i, obj in enumerate(objects):
err = dataset.create(c_name, f'query_test:{i}', obj)
if err != '':
t.error(f'failed to add object {i} -> {obj} to {c_name}')
return
t_name = c_name.removesuffix('.ds')
# Just to test I'm listing all the objects's src attribute as a list
# ordered by descending updated timestamp.
sql_stmt = f'''select src
from {t_name}
order by updated desc
'''
l = dataset.query(c_name, sql_stmt)
if l == None:
err = dataset.error_message()
t.error(f'''got an errorr for
~~~sql
{sql_stmt}
~~~
{err}''')
if len(l) < 3:
t.error(f'''expected three objects, got {l}''')
#
# Test harness
#
class ATest:
def __init__(self, test_name, verbose = False):
self._test_name = test_name
self._error_count = 0
self._verbose = False
def test_name(self):
return self._test_name
def is_verbose(self):
return self._verbose
def verbose_on(self):
self._verbose = True
def verbose_off(self):
self.verbose = False
def print(self, *msg):
if self._verbose == True:
print(*msg)
def error(self, *msg):
fn_name = self._test_name
self._error_count += 1
print(f"\t{fn_name}", *msg)
def error_count(self):
return self._error_count
class TestRunner:
def __init__(self, set_name, verbose = False):
self._set_name = set_name
self._tests = []
self._error_count = 0
self._verbose = verbose
def add(self, fn, params = []):
self._tests.append((fn, params))
def run(self):
for test in self._tests:
fn_name = test[0].__name__
t = ATest(fn_name, self._verbose)
fn, params = test[0], test[1]
fn(t, *params)
error_count = t.error_count()
if error_count > 0:
print(f"\t\t{fn_name} failed, {error_count} errors found")
if fail_fast == True:
return
else:
print(f"\t\t{fn_name} OK")
self._error_count += error_count
error_count = self._error_count
set_name = self._set_name
if error_count > 0:
print(f"Failed {set_name}, {error_count} total errors found")
sys.exit(1)
print("PASS")
print("Ok", __file__)
sys.exit(0)
#
# Main processing
#
if __name__ == "__main__":
print("Starting dataset_test.py")
print("Testing dataset version", dataset.dataset_version())
if not os.path.exists('testout'):
os.mkdir('testout')
# Pre-test check
error_count = 0
ok = True
dataset.verbose_off()
c_name = "test_collection.ds"
test_runner = TestRunner(os.path.basename(__file__))
test_runner.add(test_setup, [c_name])
test_runner.add(test_basic, [c_name])
test_runner.add(test_query, [c_name])
test_runner.add(test_keys, [c_name])
test_runner.add(test_issue32, [c_name])
test_runner.add(test_attachments, [c_name])
test_runner.add(test_join, [c_name])
test_runner.add(test_issue43,["test_issue43.ds", "test_issue43.csv"])
# NOTE: simple cloning requires a DSN for training and test datasets
test_runner.add(test_frame, ["test_frame.ds"])
test_runner.add(test_frame_objects, ["test_frame.ds"])
#test_runner.add(test_sync_csv, ["test_sync_csv.ds"])
test_runner.add(test_check_repair, ["test_check_and_repair.ds"])
test_runner.add(test_clone_sample, ["test_collection.ds", 5, "test_training.ds", "", "test_test.ds", ""])
test_runner.add(test_issue12, ['test_issue12.ds'])
test_runner.add(test_query, [c_name])
test_runner.run()