-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
165 lines (145 loc) · 5.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import dataloader, resnet_model, utils, imagenet_resnet
import torch
import torch.nn as nn
import math
from statistics import mean
import argparse
import sys, os, shutil
from tensorboardX import SummaryWriter
from datetime import datetime
# TODO create SummaryWriter()
# TODO log
# TODO gradient clipping ?
# TODO generate images
# TODO Cross validation ?
# TODO which optimezer to use ? (For now, adam)
# TODO check if this model doesn't just get average
# TODO VARIABLES should be arguments
"""
python3 train.py --load
"""
dt = str(datetime.now()).replace(" ", "_")
BATCH_SIZE = 128
EPOCH_SIZE = 1000
SAVE_EPOCH_LIST = [] # save model separtely
DROPOUT = 0.4
SHUFFLE = False # TODO normally, True is better when training !
# L_RATE = 1e-04 # 1e-04 for 96 model
L_RATE = 5e-05 # 226 model
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
SAVE_NAME = "checkpoints/save.pt"
SUMMARY_WRITER_PATH = "runs/affined_226+movexy_gamma0.8step150" + dt
# scheduler config
SCHEDULER = True
STEP_SIZE = 150
GAMMA = 0.8
# Argument
parser = argparse.ArgumentParser()
parser.add_argument("--load", help='load [save.pt] model', action="store_true")
args = parser.parse_args()
# Load or create model
loading = args.load
if loading:
try:
if DEVICE == "cpu":
model = torch.load(SAVE_NAME, map_location={"cuda:0": "cpu"})
else:
model = torch.load(SAVE_NAME, map_location={"cpu": "cuda:0"})
optimizer = torch.optim.Adam(model.parameters(), L_RATE)
optimizer.load_state_dict(model.info_dict['optimizer'])
print("Success loading model")
except IOError:
print("Could not find " + SAVE_NAME)
sys.exit(0)
else:
print("Create new model")
# model = resnet_model.ResNet(dropout=DROPOUT).to(DEVICE)
model = imagenet_resnet.resnet18().to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), L_RATE)
print(model)
def training():
train_data_loader = dataloader.DataLoader(BATCH_SIZE, test=False)
eval_X, eval_y = train_data_loader.get_eval_data()
eval_data_loader = dataloader.DataLoader(
BATCH_SIZE, test=False, X=eval_X, y=eval_y
)
writer = SummaryWriter(SUMMARY_WRITER_PATH)
if SCHEDULER:
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=STEP_SIZE, gamma=GAMMA
)
if loading:
best_loss = float(model.info_dict['best_loss'])
init_epoch = int(model.info_dict['epoch']) + 1
print("Best loss is {:4f}".format(best_loss))
else:
best_loss = math.inf
init_epoch = 1
for epoch in range(init_epoch, EPOCH_SIZE + 1):
print("\n>>> Epoch {} / {}".format(epoch, EPOCH_SIZE))
# print(">>> Start training")
model.train() # training mode
if SCHEDULER:
scheduler.step()
train_losses = []
iteration = 0
while train_data_loader.next_is_available():
iteration += 1
X, y = train_data_loader.get_batch()
X, y = X.to(DEVICE), y.to(DEVICE)
optimizer.zero_grad()
out = model(X)
train_loss = nn.MSELoss()(out, y)
train_losses.append(train_loss.item())
train_loss.backward()
optimizer.step()
if iteration == 1 and epoch % 10 == 0:
utils.save_figures(
X,
out,
"training_images/train_{}.png".format(epoch)
)
# print("training loss : {:12.4f}".format(train_loss), end='\r')
avg_train_loss = mean(train_losses)
# print("\n >>> Average training loss: {}".format(avg_train_loss))
writer.add_scalar('avg_train_loss', avg_train_loss, epoch)
train_data_loader.restart(shuffle=SHUFFLE)
# print(">>> Start Test")
model.eval() # evaluation mode
test_losses = []
val_iteration = 0
with torch.no_grad():
while eval_data_loader.next_is_available():
val_iteration += 1
X, y = eval_data_loader.get_batch()
X, y = X.to(DEVICE), y.to(DEVICE)
out = model(X)
test_loss = nn.MSELoss()(out, y)
test_losses.append(test_loss.item())
if val_iteration == 1 and epoch % 10 == 0:
utils.save_figures(
X,
out,
"test_images/test_{}.png".format(epoch))
avg_test_loss = mean(test_losses)
print(">>> Average test loss: {}".format(avg_test_loss))
writer.add_scalar('avg_test_loss', avg_test_loss, epoch)
eval_data_loader.restart()
if avg_test_loss < best_loss:
print(">>> Saving models...")
best_loss = avg_test_loss
save_dict = {"epoch": epoch,
"best_loss": best_loss,
"optimizer": optimizer.state_dict()
}
model.info_dict = save_dict
torch.save(model, SAVE_NAME)
if epoch in SAVE_EPOCH_LIST:
if os.path.isfile(SAVE_NAME):
shutil.copyfile(
SAVE_NAME,
SAVE_NAME.replace(".pt", "_{}.pt".format(epoch))
)
writer.close()
if __name__ == "__main__":
training()