-
Notifications
You must be signed in to change notification settings - Fork 341
/
Copy pathmlsd.py
144 lines (114 loc) · 3.98 KB
/
mlsd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import sys
import time
import ailia
import cv2
import numpy as np
from PIL import Image
from mlsd_utils import pred_lines
# import original modules
sys.path.append('../../util')
# logger
from logging import getLogger
import webcamera_utils
from image_utils import imread, load_image
from model_utils import check_and_download_models
from arg_utils import get_base_parser, get_savepath, update_parser
logger = getLogger(__name__)
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
# ======================
# Parameters
# ======================
REMOTE_PATH = 'https://storage.googleapis.com/ailia-models/mlsd/'
WEIGHT_PATH = 'M-LSD_512_large.opt.onnx'
MODEL_PATH = 'M-LSD_512_large.opt.onnx.prototxt'
IMAGE_PATH = 'input.jpg'
SAVE_IMAGE_PATH = 'output.jpg'
IMAGE_HEIGHT = 512
IMAGE_WIDTH = 512
# ======================
# Arguemnt Parser Config
# ======================
parser = get_base_parser('mlsd model', IMAGE_PATH, SAVE_IMAGE_PATH)
args = update_parser(parser)
args.env_id = 0
logger.info('Change env_id: 0')
# ======================
# Main functions
# ======================
def gradio_wrapper_for_LSD(img_input, net):
lines = pred_lines(img_input, net, input_shape=[512, 512])
img_output = img_input.copy()
# draw lines
for line in lines:
x_start, y_start, x_end, y_end = [int(val) for val in line]
cv2.line(img_output, (x_start, y_start), (x_end, y_end), [0,255,255], 2)
return img_output
def recognize_from_image():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
# input image loop
for image_path in args.input:
# prepare input data
logger.info(image_path)
img_input = imread(image_path)
# inference
logger.info('Start inference...')
logger.warning('Inference using CPU because model accuracy is low on GPU.')
if args.benchmark:
logger.info('BENCHMARK mode')
for i in range(args.benchmark_count):
start = int(round(time.time() * 1000))
preds_img = gradio_wrapper_for_LSD(img_input, net)
end = int(round(time.time() * 1000))
logger.info(f'\tailia processing time {end - start} ms')
else:
preds_img = gradio_wrapper_for_LSD(img_input, net)
# postprocessing
savepath = get_savepath(args.savepath, image_path)
logger.info(f'saved at : {savepath}')
cv2.imwrite(savepath, preds_img)
logger.info('Script finished successfully.')
def recognize_from_video():
# net initialize
net = ailia.Net(MODEL_PATH, WEIGHT_PATH, env_id=args.env_id)
capture = webcamera_utils.get_capture(args.video)
# create video writer if savepath is specified as video format
if args.savepath is not None:
f_h = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
f_w = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
writer = webcamera_utils.get_writer(args.savepath, f_h, f_w)
else:
writer = None
logger.warning('Inference using CPU because model accuracy is low on GPU.')
frame_shown = False
while(True):
ret, frame = capture.read()
if (cv2.waitKey(1) & 0xFF == ord('q')) or not ret:
break
if frame_shown and cv2.getWindowProperty('frame', cv2.WND_PROP_VISIBLE) == 0:
break
img_input = np.array(frame)
# inference
preds_img = gradio_wrapper_for_LSD(img_input, net)
cv2.imshow('frame', preds_img)
frame_shown = True
# save results
if writer is not None:
writer.write(preds_img)
capture.release()
cv2.destroyAllWindows()
if writer is not None:
writer.release()
logger.info('Script finished successfully.')
def main():
# model files check and download
check_and_download_models(WEIGHT_PATH, MODEL_PATH, REMOTE_PATH)
if args.video is not None:
# video mode
recognize_from_video()
else:
# image mode
recognize_from_image()
if __name__ == '__main__':
main()