-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhybrid_sted_optical_table.py
60 lines (47 loc) · 1.82 KB
/
hybrid_sted_optical_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Setting the path for XLuminA modules:
import os
import sys
# Setting the path for XLuminA modules:
current_path = os.path.abspath(os.path.join('..'))
module_path = os.path.join(current_path)
if module_path not in sys.path:
sys.path.append(module_path)
from xlumina.__init__ import um, nm, cm, mm
from xlumina.vectorized_optics import *
from xlumina.optical_elements import hybrid_setup_fluorophores
from xlumina.loss_functions import vectorized_loss_hybrid
from xlumina.toolbox import space, softmin
import jax.numpy as jnp
"""
Large-scale setup for STED microscopy baseline rediscovery:
3x3 initial setup - light gets detected across 6 detectors.
"""
# 1. System specs:
sensor_lateral_size = 824 # Resolution
wavelength1 = 650*nm
wavelength2 = 532*nm
x_total = 2500*um
x, y = space(x_total, sensor_lateral_size)
shape = jnp.shape(x)[0]
# 2. Define the optical functions: two orthogonally polarized beams:
w0 = (1200*um, 1200*um)
ls1 = PolarizedLightSource(x, y, wavelength1)
ls1.gaussian_beam(w0=w0, jones_vector=(1, 1))
ls2 = PolarizedLightSource(x, y, wavelength2)
ls2.gaussian_beam(w0=w0, jones_vector=(1, 1))
# 3. Define the output (High Resolution) detection:
x_out, y_out = jnp.array(space(10*um, 400))
# 4. High NA objective lens specs:
NA = 0.9
radius_lens = 3.6*mm/2
f_lens = radius_lens / NA
# 5. Static parameters - don't change during optimization:
fixed_params = [radius_lens, f_lens, x_out, y_out]
# 6. Define the loss function:
@jit
def loss_hybrid_sted(parameters):
# Output from hybrid_setup is jnp.array(6, N, N): for 6 detectors
i_effective = hybrid_setup_fluorophores(ls1, ls2, ls1, ls2, ls1, ls2, parameters, fixed_params, distance_offset = 10)
# Get the minimum value within loss value array of shape (6, 1, 1)
loss_val = softmin(vectorized_loss_hybrid(i_effective))
return loss_val