-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhalo_mnl.py
388 lines (338 loc) · 13.5 KB
/
halo_mnl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
"""Halo MNL model."""
import math
import pandas as pd
import tensorflow as tf
# from .conditional_logit import ConditionalLogit
from .simple_mnl import SimpleMNL
class LowRankHaloMNL(SimpleMNL):
"""Implementation of Low Rank Halo MNL model."""
def __init__(
self,
halo_latent_dim,
add_exit_choice=False,
intercept=None,
optimizer="lbfgs",
lr=0.001,
**kwargs,
):
"""Initialize of Simple-MNL.
Parameters
----------
add_exit_choice : bool, optional
Whether or not to normalize the probabilities computation with an exit choice
whose utility would be 1, by default True
intercept: str, optional
Type of intercept to use, by default None
optimizer: str
TensorFlow optimizer to be used for estimation
lr: float
Learning Rate to be used with optimizer.
"""
super().__init__(add_exit_choice=add_exit_choice, optimizer=optimizer, lr=lr, **kwargs)
self.halo_latent_dim = halo_latent_dim
self.instantiated = False
self.intercept = intercept
def instantiate(self, n_items, n_shared_features, n_items_features):
"""Instantiate the model from ModelSpecification object.
Parameters
----------
n_items : int
Number of items/aternatives to consider.
n_shared_features : int
Number of contexts features
n_items_features : int
Number of contexts items features
Returns
-------
list of tf.Tensor
List of the weights created coresponding to the specification.
"""
indexes, weights = super().instantiate(n_items, n_shared_features, n_items_features)
u_mat = tf.Variable((tf.random.normal((n_items, self.halo_latent_dim))), name="U")
v_mat = tf.Variable((tf.random.normal((self.halo_latent_dim, n_items))), name="V")
weights += [u_mat, v_mat]
self.zero_diag = tf.zeros(n_items)
self.instantiated = True
self.indexes = indexes
self._trainable_weights = weights
return indexes, weights
def compute_batch_utility(
self,
shared_features_by_choice,
items_features_by_choice,
available_items_by_choice,
choices,
):
"""Compute the utility of the model. Selects the right method to compute.
Parameters
----------
shared_features_by_choice : tuple of np.ndarray (choices_features)
a batch of shared features
Shape must be (n_choices, n_shared_features)
items_features_by_choice : tuple of np.ndarray (choices_items_features)
a batch of items features
Shape must be (n_choices, n_items, n_items_features)
available_items_by_choice : np.ndarray
A batch of items availabilities
Shape must be (n_choices, n_items)
choices : np.ndarray
Choices
Shape must be (n_choices, )
Returns
-------
tf.Tensor
Computed utilities of shape (n_choices, n_items).
"""
items_utilities = super().compute_batch_utility(
shared_features_by_choice, items_features_by_choice, available_items_by_choice, choices
)
halo = tf.linalg.matmul(self.trainable_weights[-2], self.trainable_weights[-1])
halo = tf.linalg.set_diag(halo, self.zero_diag)
halo = tf.linalg.matmul(available_items_by_choice, halo)
return items_utilities + halo
def get_weights_std(self, choice_dataset):
"""Approximates Std Err with Hessian matrix.
Parameters
----------
choice_dataset : ChoiceDataset
ChoiceDataset used for the estimation of the weights that will be
used to compute the Std Err of this estimation.
Returns
-------
tf.Tensor
Estimation of the Std Err for the weights.
"""
# Loops of differentiation
with tf.GradientTape() as tape_1:
with tf.GradientTape(persistent=True) as tape_2:
model = self.clone()
w = tf.concat(self.trainable_weights[:-2], axis=0)
tape_2.watch(w)
tape_1.watch(w)
mw = []
index = 0
for _w in self.trainable_weights:
mw.append(w[index : index + _w.shape[0]])
index += _w.shape[0]
model._trainable_weights = mw + [
self.trainable_weights[-2],
self.trainable_weights[-1],
]
for batch in choice_dataset.iter_batch(batch_size=-1):
utilities = model.compute_batch_utility(*batch)
probabilities = tf.nn.softmax(utilities, axis=-1)
loss = tf.keras.losses.CategoricalCrossentropy(reduction="sum")(
y_pred=probabilities,
y_true=tf.one_hot(choice_dataset.choices, depth=probabilities.shape[-1]),
)
# Compute the Jacobian
jacobian = tape_2.jacobian(loss, w)
# Compute the Hessian from the Jacobian
hessian = tape_1.jacobian(jacobian, w)
hessian = tf.linalg.inv(tf.squeeze(hessian))
return tf.sqrt([hessian[i][i] for i in range(len(tf.squeeze(hessian)))])
def compute_report(self, choice_dataset):
"""Compute a report of the estimated weights.
Parameters
----------
choice_dataset : ChoiceDataset
ChoiceDataset used for the estimation of the weights that will be
used to compute the Std Err of this estimation.
Returns
-------
pandas.DataFrame
A DF with estimation, Std Err, z_value and p_value for each coefficient.
"""
def phi(x):
"""Cumulative distribution function for the standard normal distribution."""
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
weights_std = self.get_weights_std(choice_dataset)
names = []
z_values = []
estimations = []
p_z = []
i = 0
for weight in self.trainable_weights[:-2]:
for j in range(weight.shape[0]):
if weight.shape[0] > 1:
names.append(f"{weight.name[:-2]}_{j}")
else:
names.append(f"{weight.name[:-2]}")
estimations.append(weight.numpy()[j])
z_values.append(weight.numpy()[j] / weights_std[i].numpy())
p_z.append(2 * (1 - phi(tf.math.abs(z_values[-1]).numpy())))
i += 1
return pd.DataFrame(
{
"Coefficient Name": names,
"Coefficient Estimation": estimations,
"Std. Err": weights_std.numpy(),
"z_value": z_values,
"P(.>z)": p_z,
},
)
class HaloMNL(SimpleMNL):
"""Implementation of Low Rank Halo MNL model."""
def __init__(
self,
add_exit_choice=False,
intercept=None,
optimizer="lbfgs",
lr=0.001,
**kwargs,
):
"""Initialize of Simple-MNL.
Parameters
----------
add_exit_choice : bool, optional
Whether or not to normalize the probabilities computation with an exit choice
whose utility would be 1, by default True
intercept: str, optional
Type of intercept to use, by default None
optimizer: str
TensorFlow optimizer to be used for estimation
lr: float
Learning Rate to be used with optimizer.
"""
super().__init__(add_exit_choice=add_exit_choice, optimizer=optimizer, lr=lr, **kwargs)
self.instantiated = False
self.intercept = intercept
def instantiate(self, n_items, n_shared_features, n_items_features):
"""Instantiate the model from ModelSpecification object.
Parameters
----------
n_items : int
Number of items/aternatives to consider.
n_shared_features : int
Number of contexts features
n_items_features : int
Number of contexts items features
Returns
-------
list of tf.Tensor
List of the weights created coresponding to the specification.
"""
indexes, weights = super().instantiate(n_items, n_shared_features, n_items_features)
halo_matrix = tf.Variable((tf.random.normal((n_items, n_items))), name="halo_matrix")
self.zero_diag = tf.zeros(n_items)
# halo_matrix = tf.linalg.set_diag(halo_matrix, self.zero_diag)
weights += [halo_matrix]
self.instantiated = True
self.indexes = indexes
self._trainable_weights = weights
return indexes, weights
def compute_batch_utility(
self,
shared_features_by_choice,
items_features_by_choice,
available_items_by_choice,
choices,
):
"""Compute the utility of the model. Selects the right method to compute.
Parameters
----------
shared_features_by_choice : tuple of np.ndarray (choices_features)
a batch of shared features
Shape must be (n_choices, n_shared_features)
items_features_by_choice : tuple of np.ndarray (choices_items_features)
a batch of items features
Shape must be (n_choices, n_items, n_items_features)
available_items_by_choice : np.ndarray
A batch of items availabilities
Shape must be (n_choices, n_items)
choices : np.ndarray
Choices
Shape must be (n_choices, )
Returns
-------
tf.Tensor
Computed utilities of shape (n_choices, n_items).
"""
items_utilities = super().compute_batch_utility(
shared_features_by_choice, items_features_by_choice, available_items_by_choice, choices
)
halo = tf.linalg.matmul(
available_items_by_choice,
tf.linalg.set_diag(self.trainable_weights[-1], self.zero_diag),
)
return items_utilities + halo
def get_weights_std(self, choice_dataset):
"""Approximates Std Err with Hessian matrix.
Parameters
----------
choice_dataset : ChoiceDataset
ChoiceDataset used for the estimation of the weights that will be
used to compute the Std Err of this estimation.
Returns
-------
tf.Tensor
Estimation of the Std Err for the weights.
"""
# Loops of differentiation
with tf.GradientTape() as tape_1:
with tf.GradientTape(persistent=True) as tape_2:
model = self.clone()
w = tf.concat(self.trainable_weights[:-1], axis=0)
tape_2.watch(w)
tape_1.watch(w)
mw = []
index = 0
for _w in self.trainable_weights:
mw.append(w[index : index + _w.shape[0]])
index += _w.shape[0]
model._trainable_weights = mw + [
self.trainable_weights[-1],
]
for batch in choice_dataset.iter_batch(batch_size=-1):
utilities = model.compute_batch_utility(*batch)
probabilities = tf.nn.softmax(utilities, axis=-1)
loss = tf.keras.losses.CategoricalCrossentropy(reduction="sum")(
y_pred=probabilities,
y_true=tf.one_hot(choice_dataset.choices, depth=probabilities.shape[-1]),
)
# Compute the Jacobian
jacobian = tape_2.jacobian(loss, w)
# Compute the Hessian from the Jacobian
hessian = tape_1.jacobian(jacobian, w)
hessian = tf.linalg.inv(tf.squeeze(hessian))
return tf.sqrt([hessian[i][i] for i in range(len(tf.squeeze(hessian)))])
def compute_report(self, choice_dataset):
"""Compute a report of the estimated weights.
Parameters
----------
choice_dataset : ChoiceDataset
ChoiceDataset used for the estimation of the weights that will be
used to compute the Std Err of this estimation.
Returns
-------
pandas.DataFrame
A DF with estimation, Std Err, z_value and p_value for each coefficient.
"""
def phi(x):
"""Cumulative distribution function for the standard normal distribution."""
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
weights_std = self.get_weights_std(choice_dataset)
names = []
z_values = []
estimations = []
p_z = []
i = 0
for weight in self.trainable_weights[:-1]:
for j in range(weight.shape[0]):
if weight.shape[0] > 1:
names.append(f"{weight.name[:-2]}_{j}")
else:
names.append(f"{weight.name[:-2]}")
estimations.append(weight.numpy()[j])
z_values.append(weight.numpy()[j] / weights_std[i].numpy())
p_z.append(2 * (1 - phi(tf.math.abs(z_values[-1]).numpy())))
i += 1
return pd.DataFrame(
{
"Coefficient Name": names,
"Coefficient Estimation": estimations,
"Std. Err": weights_std.numpy(),
"z_value": z_values,
"P(.>z)": p_z,
},
)