|
| 1 | +# code credit: https://github.com/Tsingularity/dift/blob/main/src/models/dift_sd.py |
| 2 | +from diffusers import StableDiffusionPipeline |
| 3 | +import torch |
| 4 | +import torch.nn as nn |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +import numpy as np |
| 7 | +from typing import Any, Callable, Dict, List, Optional, Union |
| 8 | +from diffusers.models.unet_2d_condition import UNet2DConditionModel |
| 9 | +from diffusers import DDIMScheduler |
| 10 | +import gc |
| 11 | +from PIL import Image |
| 12 | + |
| 13 | +class MyUNet2DConditionModel(UNet2DConditionModel): |
| 14 | + def forward( |
| 15 | + self, |
| 16 | + sample: torch.FloatTensor, |
| 17 | + timestep: Union[torch.Tensor, float, int], |
| 18 | + up_ft_indices, |
| 19 | + encoder_hidden_states: torch.Tensor, |
| 20 | + class_labels: Optional[torch.Tensor] = None, |
| 21 | + timestep_cond: Optional[torch.Tensor] = None, |
| 22 | + attention_mask: Optional[torch.Tensor] = None, |
| 23 | + cross_attention_kwargs: Optional[Dict[str, Any]] = None): |
| 24 | + r""" |
| 25 | + Args: |
| 26 | + sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor |
| 27 | + timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps |
| 28 | + encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states |
| 29 | + cross_attention_kwargs (`dict`, *optional*): |
| 30 | + A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under |
| 31 | + `self.processor` in |
| 32 | + [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
| 33 | + """ |
| 34 | + # By default samples have to be AT least a multiple of the overall upsampling factor. |
| 35 | + # The overall upsampling factor is equal to 2 ** (# num of upsampling layears). |
| 36 | + # However, the upsampling interpolation output size can be forced to fit any upsampling size |
| 37 | + # on the fly if necessary. |
| 38 | + default_overall_up_factor = 2**self.num_upsamplers |
| 39 | + |
| 40 | + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` |
| 41 | + forward_upsample_size = False |
| 42 | + upsample_size = None |
| 43 | + |
| 44 | + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
| 45 | + # logger.info("Forward upsample size to force interpolation output size.") |
| 46 | + forward_upsample_size = True |
| 47 | + |
| 48 | + # prepare attention_mask |
| 49 | + if attention_mask is not None: |
| 50 | + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
| 51 | + attention_mask = attention_mask.unsqueeze(1) |
| 52 | + |
| 53 | + # 0. center input if necessary |
| 54 | + if self.config.center_input_sample: |
| 55 | + sample = 2 * sample - 1.0 |
| 56 | + |
| 57 | + # 1. time |
| 58 | + timesteps = timestep |
| 59 | + if not torch.is_tensor(timesteps): |
| 60 | + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can |
| 61 | + # This would be a good case for the `match` statement (Python 3.10+) |
| 62 | + is_mps = sample.device.type == "mps" |
| 63 | + if isinstance(timestep, float): |
| 64 | + dtype = torch.float32 if is_mps else torch.float64 |
| 65 | + else: |
| 66 | + dtype = torch.int32 if is_mps else torch.int64 |
| 67 | + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
| 68 | + elif len(timesteps.shape) == 0: |
| 69 | + timesteps = timesteps[None].to(sample.device) |
| 70 | + |
| 71 | + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML |
| 72 | + timesteps = timesteps.expand(sample.shape[0]) |
| 73 | + |
| 74 | + t_emb = self.time_proj(timesteps) |
| 75 | + |
| 76 | + # timesteps does not contain any weights and will always return f32 tensors |
| 77 | + # but time_embedding might actually be running in fp16. so we need to cast here. |
| 78 | + # there might be better ways to encapsulate this. |
| 79 | + t_emb = t_emb.to(dtype=self.dtype) |
| 80 | + |
| 81 | + emb = self.time_embedding(t_emb, timestep_cond) |
| 82 | + |
| 83 | + if self.class_embedding is not None: |
| 84 | + if class_labels is None: |
| 85 | + raise ValueError("class_labels should be provided when num_class_embeds > 0") |
| 86 | + |
| 87 | + if self.config.class_embed_type == "timestep": |
| 88 | + class_labels = self.time_proj(class_labels) |
| 89 | + |
| 90 | + class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
| 91 | + emb = emb + class_emb |
| 92 | + |
| 93 | + # 2. pre-process |
| 94 | + sample = self.conv_in(sample) |
| 95 | + |
| 96 | + # 3. down |
| 97 | + down_block_res_samples = (sample,) |
| 98 | + for downsample_block in self.down_blocks: |
| 99 | + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
| 100 | + sample, res_samples = downsample_block( |
| 101 | + hidden_states=sample, |
| 102 | + temb=emb, |
| 103 | + encoder_hidden_states=encoder_hidden_states, |
| 104 | + attention_mask=attention_mask, |
| 105 | + cross_attention_kwargs=cross_attention_kwargs, |
| 106 | + ) |
| 107 | + else: |
| 108 | + sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
| 109 | + |
| 110 | + down_block_res_samples += res_samples |
| 111 | + |
| 112 | + # 4. mid |
| 113 | + if self.mid_block is not None: |
| 114 | + sample = self.mid_block( |
| 115 | + sample, |
| 116 | + emb, |
| 117 | + encoder_hidden_states=encoder_hidden_states, |
| 118 | + attention_mask=attention_mask, |
| 119 | + cross_attention_kwargs=cross_attention_kwargs, |
| 120 | + ) |
| 121 | + |
| 122 | + # 5. up |
| 123 | + up_ft = {} |
| 124 | + for i, upsample_block in enumerate(self.up_blocks): |
| 125 | + |
| 126 | + if i > np.max(up_ft_indices): |
| 127 | + break |
| 128 | + |
| 129 | + is_final_block = i == len(self.up_blocks) - 1 |
| 130 | + |
| 131 | + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
| 132 | + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
| 133 | + |
| 134 | + # if we have not reached the final block and need to forward the |
| 135 | + # upsample size, we do it here |
| 136 | + if not is_final_block and forward_upsample_size: |
| 137 | + upsample_size = down_block_res_samples[-1].shape[2:] |
| 138 | + |
| 139 | + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
| 140 | + sample = upsample_block( |
| 141 | + hidden_states=sample, |
| 142 | + temb=emb, |
| 143 | + res_hidden_states_tuple=res_samples, |
| 144 | + encoder_hidden_states=encoder_hidden_states, |
| 145 | + cross_attention_kwargs=cross_attention_kwargs, |
| 146 | + upsample_size=upsample_size, |
| 147 | + attention_mask=attention_mask, |
| 148 | + ) |
| 149 | + else: |
| 150 | + sample = upsample_block( |
| 151 | + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
| 152 | + ) |
| 153 | + |
| 154 | + if i in up_ft_indices: |
| 155 | + up_ft[i] = sample.detach() |
| 156 | + |
| 157 | + output = {} |
| 158 | + output['up_ft'] = up_ft |
| 159 | + return output |
| 160 | + |
| 161 | +class OneStepSDPipeline(StableDiffusionPipeline): |
| 162 | + @torch.no_grad() |
| 163 | + def __call__( |
| 164 | + self, |
| 165 | + img_tensor, |
| 166 | + t, |
| 167 | + up_ft_indices, |
| 168 | + negative_prompt: Optional[Union[str, List[str]]] = None, |
| 169 | + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
| 170 | + prompt_embeds: Optional[torch.FloatTensor] = None, |
| 171 | + callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
| 172 | + callback_steps: int = 1, |
| 173 | + cross_attention_kwargs: Optional[Dict[str, Any]] = None |
| 174 | + ): |
| 175 | + |
| 176 | + device = self._execution_device |
| 177 | + latents = self.vae.encode(img_tensor).latent_dist.sample() * self.vae.config.scaling_factor |
| 178 | + t = torch.tensor(t, dtype=torch.long, device=device) |
| 179 | + noise = torch.randn_like(latents).to(device) |
| 180 | + latents_noisy = self.scheduler.add_noise(latents, noise, t) |
| 181 | + unet_output = self.unet(latents_noisy, |
| 182 | + t, |
| 183 | + up_ft_indices, |
| 184 | + encoder_hidden_states=prompt_embeds, |
| 185 | + cross_attention_kwargs=cross_attention_kwargs) |
| 186 | + return unet_output |
| 187 | + |
| 188 | + |
| 189 | +class SDFeaturizer: |
| 190 | + def __init__(self, sd_id='stabilityai/stable-diffusion-2-1'): |
| 191 | + unet = MyUNet2DConditionModel.from_pretrained(sd_id, subfolder="unet") |
| 192 | + onestep_pipe = OneStepSDPipeline.from_pretrained(sd_id, unet=unet, safety_checker=None) |
| 193 | + onestep_pipe.vae.decoder = None |
| 194 | + onestep_pipe.scheduler = DDIMScheduler.from_pretrained(sd_id, subfolder="scheduler") |
| 195 | + gc.collect() |
| 196 | + onestep_pipe = onestep_pipe.to("cuda") |
| 197 | + onestep_pipe.enable_attention_slicing() |
| 198 | + # onestep_pipe.enable_xformers_memory_efficient_attention() |
| 199 | + self.pipe = onestep_pipe |
| 200 | + |
| 201 | + @torch.no_grad() |
| 202 | + def forward(self, |
| 203 | + img_tensor, |
| 204 | + prompt, |
| 205 | + t=261, |
| 206 | + up_ft_index=1, |
| 207 | + ensemble_size=8): |
| 208 | + ''' |
| 209 | + Args: |
| 210 | + img_tensor: should be a single torch tensor in the shape of [1, C, H, W] or [C, H, W] |
| 211 | + prompt: the prompt to use, a string |
| 212 | + t: the time step to use, should be an int in the range of [0, 1000] |
| 213 | + up_ft_index: which upsampling block of the U-Net to extract feature, you can choose [0, 1, 2, 3] |
| 214 | + ensemble_size: the number of repeated images used in the batch to extract features |
| 215 | + Return: |
| 216 | + unet_ft: a torch tensor in the shape of [1, c, h, w] |
| 217 | + ''' |
| 218 | + img_tensor = img_tensor.repeat(ensemble_size, 1, 1, 1).cuda() # ensem, c, h, w |
| 219 | + prompt_embeds = self.pipe._encode_prompt( |
| 220 | + prompt=prompt, |
| 221 | + device='cuda', |
| 222 | + num_images_per_prompt=1, |
| 223 | + do_classifier_free_guidance=False) # [1, 77, dim] |
| 224 | + prompt_embeds = prompt_embeds.repeat(ensemble_size, 1, 1) |
| 225 | + unet_ft_all = self.pipe( |
| 226 | + img_tensor=img_tensor, |
| 227 | + t=t, |
| 228 | + up_ft_indices=[up_ft_index], |
| 229 | + prompt_embeds=prompt_embeds) |
| 230 | + unet_ft = unet_ft_all['up_ft'][up_ft_index] # ensem, c, h, w |
| 231 | + unet_ft = unet_ft.mean(0, keepdim=True) # 1,c,h,w |
| 232 | + return unet_ft |
0 commit comments