-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmnist_cnn.py
182 lines (138 loc) · 5.98 KB
/
mnist_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# initially based on https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
# gets to ~0.9940 accuracy on test set after 12 epochs (~30s per epoch on NVidia GTX TITAN, 1060s per epoch on Intel i7)
# tested on ubuntu with Python 3, Keras version 1.2.2, tensorflow backend
from keras.datasets import mnist
from keras.layers import Dense, Dropout, Flatten, Input, Convolution2D, MaxPooling2D, Merge
from keras.utils import np_utils
from keras.models import Model
#import matplotlib.pyplot as plt
import numpy as np
batch_size = 64
num_classes = 10
nb_epochs = 12
nb_filters = 64
my_optimizer = 'adadelta' # proved better than 'adam' in my experiments
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 60,000 training examples - each is of size 28 by 28
# Pixel values are 0 to 255. 0=white, 255=black
# plot first 4 images
#plt.subplot(221)
#plt.imshow(x_train[0], cmap=plt.get_cmap('gray_r'))
#plt.subplot(222)
#plt.imshow(x_train[1], cmap=plt.get_cmap('gray_r'))
#plt.subplot(223)
#plt.imshow(x_train[2], cmap=plt.get_cmap('gray_r'))
#plt.subplot(224)
#plt.imshow(x_train[3], cmap=plt.get_cmap('gray_r'))
# show the plot
#plt.show()
# In 2D, "channels_last" assumes (rows, cols, channels) while "channels_first" assumes (channels, rows, cols).
# there is only one channel here (levels of grey), so we need to create a dim here
# for color pictures we would have 3: RGB
# option 'channels last'
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
my_max = np.amax(x_train)
x_train /= my_max # divide by 255 (max value) to have all values between 0 and 1
x_test /= my_max
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# transforms integers labels into one-hot flags of length ncol
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
my_input = Input(shape=input_shape, dtype='float32')
conv_1 = Convolution2D(nb_filters, 3, 3, # region size is (3, 3)
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (my_input)
# output is of dim [(w - f + 2p) / s] + 1, where w is input size, f is filter size, s is stride, and p is amount of zero padding
# [28 - 3 + 2*0 / 1] + 1 all theory is in here: http://cs231n.github.io/convolutional-networks/
pooled_conv_1 = MaxPooling2D(pool_size=(2,2)) (conv_1)
pooled_conv_1_dropped = Dropout(0.2) (pooled_conv_1)
conv_11 = Convolution2D(nb_filters, 3, 3,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (pooled_conv_1_dropped)
pooled_conv_11 = MaxPooling2D(pool_size=(2,2)) (conv_11)
pooled_conv_11_dropped = Dropout(0.2) (pooled_conv_11)
pooled_conv_11_dropped_flat = Flatten()(pooled_conv_11_dropped)
# increasing the number of different filter sizes proved better than increasing depth of each individually in my experiments
# ====
conv_2 = Convolution2D(nb_filters, 4, 4,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (my_input)
pooled_conv_2 = MaxPooling2D(pool_size=(2,2)) (conv_2)
pooled_conv_2_dropped = Dropout(0.2) (pooled_conv_2)
conv_22 = Convolution2D(nb_filters, 4, 4,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (pooled_conv_2_dropped)
pooled_conv_22 = MaxPooling2D(pool_size=(2,2)) (conv_22)
pooled_conv_22_dropped = Dropout(0.2) (pooled_conv_22)
pooled_conv_22_dropped_flat = Flatten()(pooled_conv_22_dropped)
# ====
conv_3 = Convolution2D(nb_filters, 5, 5,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (my_input)
pooled_conv_3 = MaxPooling2D(pool_size=(2,2)) (conv_3)
pooled_conv_3_dropped = Dropout(0.2) (pooled_conv_3)
conv_33 = Convolution2D(nb_filters, 2, 2,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (pooled_conv_3_dropped)
pooled_conv_33 = MaxPooling2D(pool_size=(2,2)) (conv_33)
pooled_conv_33_dropped = Dropout(0.2) (pooled_conv_33)
pooled_conv_33_dropped_flat = Flatten()(pooled_conv_33_dropped)
# ====
# ====
conv_4 = Convolution2D(nb_filters, 6, 6,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (my_input)
pooled_conv_4 = MaxPooling2D(pool_size=(2,2)) (conv_4)
pooled_conv_4_dropped = Dropout(0.2) (pooled_conv_4)
conv_44 = Convolution2D(nb_filters, 6, 6,
border_mode = 'valid',
activation = 'relu',
#input_shape=input_shape
) (pooled_conv_4_dropped)
pooled_conv_44 = MaxPooling2D(pool_size=(2,2)) (conv_44)
pooled_conv_44_dropped = Dropout(0.2) (pooled_conv_44)
pooled_conv_44_dropped_flat = Flatten()(pooled_conv_44_dropped)
# ====
merge = Merge(mode='concat') ([pooled_conv_11_dropped_flat,pooled_conv_22_dropped_flat,pooled_conv_33_dropped_flat,pooled_conv_44_dropped_flat])
merge_dropped = Dropout(0.2) (merge)
dense = Dense(128,
activation='relu'
) (merge_dropped)
dense_dropped = Dropout(0.2) (dense)
prob = Dense(output_dim = num_classes, # we output a prob distribution over the classes
activation='softmax'
) (dense_dropped)
model = Model(my_input, prob)
print([layer.output_shape for layer in model.layers])
model.compile(loss='categorical_crossentropy',
optimizer=my_optimizer,
metrics=['accuracy'])
model.fit(x_train,
y_train,
batch_size = batch_size,
nb_epoch = nb_epochs,
validation_data = (x_test, y_test)
)